Лекции
Основы микропроцессорной техники
Глава 1.
Философия микропроцессорной техники
  1.   Философия микропроцессорной техники
Глава 2.
Организация обмена информацией
Глава 3.
Функционирование процессора
Глава 4.
Организация микроконтроллеров
Глава 5.
Однокристальные микроконтроллеры серии PIC
Глава 6.
Проектирование устройств на микроконтроллерах
Глава 7.
Организация персонального компьютера
Глава 8.
Интерфейсы персонального компьютера
      Экзамен

Основы микропроцессорной техники
Глава 1. Философия микропроцессорной техники версия для печати: HTML
Лекция #1: Философия микропроцессорной техники Страницы: « 1 2 3 4 вопросы »

1.4. Архитектура микропроцессорных систем

До сих пор мы рассматривали только один тип архитектуры микропроцессорных систем — архитектуру с общей, единой шиной для данных и команд (одношинную, или принстонскую, фон-неймановскую архитектуру). Соответственно, в составе системы в этом случае присутствует одна общая память, как для данных, так и для команд (рис. 1.15).


Рис. 1.15. Архитектура с общей шиной данных и команд.

Но существует также и альтернативный тип архитектуры микропроцессорной системы — это архитектура с раздельными шинами данных и команд (двухшинная, или гарвардская, архитектура). Эта архитектура предполагает наличие в системе отдельной памяти для данных и отдельной памяти для команд (рис. 1.16). Обмен процессора с каждым из двух типов памяти происходит по своей шине.

Архитектура с общей шиной распространена гораздо больше, она применяется, например, в персональных компьютерах и в сложных микрокомпьютерах. Архитектура с раздельными шинами применяется в основном в однокристальных микроконтроллерах.

Рассмотрим некоторые достоинства и недостатки обоих архитектурных решений.

Архитектура с общей шиной (принстонская, фон-неймановская) проще, она не требует от процессора одновременного обслуживания двух шин, контроля обмена по двум шинам сразу. Наличие единой памяти данных и команд позволяет гибко распределять ее объем между кодами данных и команд. Например, в некоторых случаях нужна большая и сложная программа, а данных в памяти надо хранить не слишком много. В других случаях, наоборот, программа требуется простая, но необходимы большие объемы хранимых данных. Перераспределение памяти не вызывает никаких проблем, главное — чтобы программа и данные вместе помещались в памяти системы. Как правило, в системах с такой архитектурой память бывает довольно большого объема (до десятков и сотен мегабайт). Это позволяет решать самые сложные задачи.


Рис. 1.16. Архитектура с раздельными шинами данных и команд.

Архитектура с раздельными шинами данных и команд сложнее, она заставляет процессор работать одновременно с двумя потоками кодов, обслуживать обмен по двум шинам одновременно. Программа может размещаться только в памяти команд, данные — только в памяти данных. Такая узкая специализация ограничивает круг задач, решаемых системой, так как не дает возможности гибкого перераспределения памяти. Память данных и память команд в этом случае имеют не слишком большой объем, поэтому применение систем с данной архитектурой ограничивается обычно не слишком сложными задачами.

В чем же преимущество архитектуры с двумя шинами (гарвардской)? В первую очередь, в быстродействии.

Дело в том, что при единственной шине команд и данных процессор вынужден по одной этой шине принимать данные (из памяти или устройства ввода/вывода) и передавать данные (в память или в устройство ввода/вывода), а также читать команды из памяти. Естественно, одновременно эти пересылки кодов по магистрали происходить не могут, они должны производиться по очереди. Современные процессоры способны совместить во времени выполнение команд и проведение циклов обмена по системной шине. Использование конвейерных технологий и быстрой кэш-памяти позволяет им ускорить процесс взаимодействия со сравнительно медленной системной памятью. Повышение тактовой частоты и совершенствование структуры процессоров дают возможность сократить время выполнения команд. Но дальнейшее увеличение быстродействия системы возможно только при совмещении пересылки данных и чтения команд, то есть при переходе к архитектуре с двумя шинами.

В случае двухшинной архитектуры обмен по обеим шинам может быть независимым, параллельным во времени. Соответственно, структуры шин (количество разрядов кода адреса и кода данных, порядок и скорость обмена информацией и т.д.) могут быть выбраны оптимально для той задачи, которая решается каждой шиной. Поэтому при прочих равных условиях переход на двухшинную архитектуру ускоряет работу микропроцессорной системы, хотя и требует дополнительных затрат на аппаратуру, усложнения структуры процессора. Память данных в этом случае имеет свое распределение адресов, а память команд — свое.

Проще всего преимущества двухшинной архитектуры реализуются внутри одной микросхемы. В этом случае можно также существенно уменьшить влияние недостатков этой архитектуры. Поэтому основное ее применение — в микроконтроллерах, от которых не требуется решения слишком сложных задач, но зато необходимо максимальное быстродействие при заданной тактовой частоте.

1.5. Типы микропроцессорных систем

Диапазон применения микропроцессорной техники сейчас очень широк, требования к микропроцессорным системам предъявляются самые разные. Поэтому сформировалось несколько типов микропроцессорных систем, различающихся мощностью, универсальностью, быстродействием и структурой отличиями. Основные типы следующие:

  • микроконтроллеры — наиболее простой тип микропроцессорных систем, в которых все или большинство узлов системы выполнены в виде одной микросхемы;
  • контроллеры — управляющие микропроцессорные системы, выполненные в виде отдельных модулей;
  • микрокомпьютеры — более мощные микропроцессорные системы с развитыми средствами сопряжения с внешними устройствами.
  • компьютеры (в том числе персональные) — самые мощные и наиболее универсальные микропроцессорные системы.

Четкую границу между этими типами иногда провести довольно сложно. Быстродействие всех типов микропроцессоров постоянно растет, и нередки ситуации, когда новый микроконтроллер оказывается быстрее, например, устаревшего персонального компьютера. Но кое-какие принципиальные отличия все-таки имеются.

Микроконтроллеры представляют собой универсальные устройства, которые практически всегда используются не сами по себе, а в составе более сложных устройств, в том числе и контроллеров. Системная шина микроконтроллера скрыта от пользователя внутри микросхемы. Возможности подключения внешних устройств к микроконтроллеру ограничены. Устройства на микроконтроллерах обычно предназначены для решения одной задачи.

Контроллеры, как правило, создаются для решения какой-то отдельной задачи или группы близких задач. Они обычно не имеют возможностей подключения дополнительных узлов и устройств, например, большой памяти, средств ввода/вывода. Их системная шина чаще всего недоступна пользователю. Структура контроллера проста и оптимизирована под максимальное быстродействие. В большинстве случаев выполняемые программы хранятся в постоянной памяти и не меняются. Конструктивно контроллеры выпускаются в одноплатном варианте.

Микрокомпьютеры отличаются от контроллеров более открытой структурой, они допускают подключение к системной шине нескольких дополнительных устройств. Производятся микрокомпьютеры в каркасе, корпусе с разъемами системной магистрали, доступными пользователю. Микрокомпьютеры могут иметь средства хранения информации на магнитных носителях (например, магнитные диски) и довольно развитые средства связи с пользователем (видеомонитор, клавиатура). Микрокомпьютеры рассчитаны на широкий круг задач, но в отличие от контроллеров, к каждой новой задаче его надо приспосабливать заново. Выполняемые микрокомпьютером программы можно легко менять.

Наконец, компьютеры и самые распространенные из них — персональные компьютеры — это самые универсальные из микропроцессорных систем. Они обязательно предусматривают возможность модернизации, а также широкие возможности подключения новых устройств. Их системная шина, конечно, доступна пользователю. Кроме того, внешние устройства могут подключаться к компьютеру через несколько встроенных портов связи (количество портов доходит иногда до 10). Компьютер всегда имеет сильно развитые средства связи с пользователем, средства длительного хранения информации большого объема, средства связи с другими компьютерами по информационным сетям. Области применения компьютеров могут быть самыми разными: математические расчеты, обслуживание доступа к базам данных, управление работой сложных электронных систем, компьютерные игры, подготовка документов и т.д.

Любую задачу в принципе можно выполнить с помощью каждого из перечисленных типов микропроцессорных систем. Но при выборе типа надо по возможности избегать избыточности и предусматривать необходимую для данной задачи гибкость системы.

В настоящее время при разработке новых микропроцессорных систем чаще всего выбирают путь использования микроконтроллеров (примерно в 80% случаев). При этом микроконтроллеры применяются или самостоятельно, с минимальной дополнительной аппаратурой, или в составе более сложных контроллеров с развитыми средствами ввода/вывода.

Классические микропроцессорные системы на базе микросхем процессоров и микропроцессорных комплектов выпускаются сейчас довольно редко, в первую очередь, из-за сложности процесса разработки и отладки этих систем. Данный тип микропроцессорных систем выбирают в основном тогда, когда микроконтроллеры не могут обеспечить требуемых характеристик.

Наконец, заметное место занимают сейчас микропроцессорные системы на основе персонального компьютера. Разработчику в этом случае нужно только оснастить персональный компьютер дополнительными устройствами сопряжения, а ядро микропроцессорной системы уже готово. Персональный компьютер имеет развитые средства программирования, что существенно упрощает задачу разработчика. К тому же он может обеспечить самые сложные алгоритмы обработки информации. Основные недостатки персонального компьютера — большие размеры корпуса и аппаратурная избыточность для простых задач. Недостатком является и неприспособленность большинства персональных компьютеров к работе в сложных условиях (запыленность, высокая влажность, вибрации, высокие температуры и т.д.). Однако выпускаются и специальные персональные компьютеры, приспособленные к различным условиям эксплуатации.

Перейти к вопросам »
версия для печати: HTML
Страницы: « 1 2 3 4 вопросы »