Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Естественные и математические науки»

РАБОЧАЯ ПРОГРАММА

по дисциплине

Б.1.1.11. «Аналитическая химия и физико-химические методы анализа»

направления подготовки 18.03.01. «Химическая технология»

Профиль: «Технология и переработка полимеров»

форма обучения – очная курс - 1cemecтр - 2зачетных единиц – 4 всего часов – 144, в том числе: лекции — 32. коллоквиумы – нет практические занятия – нет лабораторные занятия – 32 самостоятельная работа – 80 зачет – нет экзамен – 2 семестр РГР – нет курсовая работа – нет курсовой проект – нет

Рабочая программа обсуждена на заседании кафедры ЕМН «27» июня 2022 года, протокол № 9

Зав. кафедрой В. тая /Жилина I

Рабочая программа утверждена на заседании УМКН НФГД «27» июня 2022 года, протокол № $\underline{5}$ Председатель УМКН и Лемии /Левкина Н.Л./

Энгельс. 2022

Рабочая программа дисциплины «Аналитическая химия и физико-химические методы анализа» составлена с учетом требований **профессиональных стандартов**, а именно:

- Специалист по химической переработке нефти и газа, утвержден приказом Министерства труда и социальной защиты РФ от 21.11.2014 г. №926н;
- Специалист по контролю качества нефти и продуктов ее переработки на нефтебазе, утвержден приказом Министерства труда и социальной защиты РФ от 12.03.2015 г. №157н.

1. Цели и задачи дисциплины

Целью освоения дисциплины «Аналитическая химия и физико-химические методы анализа» является содействие формированию и развитию у студентов общекультурных, профессиональных и специальных компетенций, позволяющих им в дальнейшем осуществлять профессиональную деятельность посредством освоения теоретических и экспериментальных основ химических, физико-химических и физических методов анализа различных объектов, а также ознакомление студентов с приемами и методами химического анализа.

Химический анализ применяется во всех областях науки, техники, производства, которые используют химические вещества. В настоящее время ни один из материалов не поступает в производство и не выпускается без данных химического анализа. По данным химического анализа определяется качество материала и области его использования. Производится также анализ непосредственно в ходе технологического процесса в динамических условиях. Зная результаты химического анализа, инженер-технолог может контролировать технологический процесс и предупреждать образование брака.

Задачи изучаемой дисциплины:

- создать чёткое представление о предмете аналитической химии, современном состоянии и путях развития аналитической химии, связи её с другими науками и практическом применении методов анализа в различных областях человеческой деятельности;
- ознакомить студентов с основными понятиями, законами и методами химии как науки, составляющей фундамент всей системы химических знаний;
- способствовать формированию у студента обобщенных приемов исследовательской деятельности (постановка задачи, теоретическое обоснование и экспериментальная проверка ее решения), научного взгляда на мир в целом;
- развить у студентов профессиональное химическое мышление, чтобы будущий бакалавр смог переносить общие методы научной работы на работу по специальности;
- показать применение теоретических представлений химии (химической термодинамики и химической кинетики) в качественном и количественном анализе;
- рассмотреть типы реакций и процессов в аналитической химии (кислотно-основные реакции, реакции комплексообразования, окислительно-восстановительные реакции);
- сформировать представление о метрологических основах химического анализа;
- познакомить студентов с теорией и практикой пробоотбора и пробоподготовки;
- познакомить студентов с важнейшими методами обнаружения и идентификации;
- познакомить студентов с методами выделения, разделения и концентрирования;
- показать применение теоретических представлений физики в создании современных аналитических методов;
- познакомить студентов с важнейшими методами анализа: гравиметрическим, титриметрическим, электрохимическим, спектроскопическим и оптическим;
- познакомить студентов с основными объектами анализа.

«Аналитическая химия и физико-химические методы анализа» представляет собой дисциплину базовой (обязательной) математической и естественнонаучной части учебного цикла (Б.1.1) основной образовательной программы бакалавриата по направлению (18.03.01.) Химическая технология. Изучение данной дисциплины базируется на знании общеобразовательной программы по следующим предметам: химия, математика, физика.

Знания, полученные обучающимися при изучении «Аналитической химии и ФХМА» являются основой для последующего успешного освоения многих дисциплин математического и естественнонаучного, а также профессионального циклов образовательной программы, например «Дополнительных глав аналитической химии», «Дополнительные главы органической химии», «Основы технологии органических веществ», «Химия и физика полимеров», «Структура и свойства полимеров», «Материаловедение и технология конструкционных материалов» и др.

3. Требования к результатам освоения дисциплины

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие общекультурные и профессиональные компетенции при освоении ООП ВО, реализующей федеральный государственный образовательный стандарт высшего образования (ФГОС ВО):

- Готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире (ОПК-3)
- способность планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-16)

По окончании изучения дисциплины студент

должен знать: физические и теоретические основы изученных методов анализа, аналитические возможности каждого метода, области его применения, основное аппаратурное оформление,

должен уметь: оценить возможность использования того или иного метода анализа для решения конкретной задачи; извлекать простейшую информацию на основании рассмотрения результатов анализа;

должен владеть: практическими навыками проведения титриметрического, фотометрического, рефрактометрического, потенциометрического, спектрофотометрического методов анализа.

В соответствии с требованиями **профессиональных стандартов** освоение дисциплины направлено на формирование следующих трудовых действий, необходимых умений и необходимых знаний, достаточных для выполнения трудовых функций:

Трудовая	Трудовые	Необходимые	Необходимые	
функция	действия	умения	знания	
Профстандар	т «Специалист по хим	ической переработке	нефти и газа»	
3.2.9. Контроль ка-	Организация прове-	Разрабатывать мето-	Оборудование лабо-	
чества сырья, ком-	дения лабораторных	дики проведения из-	ратории, принципы	
понентов и выпус-	анализов в соответ-	мерений и меро-	его работы и прави-	
каемой продукции,	ствии с существую-	приятия по улучше-	ла эксплуатации	
паспортизация то-	щими стандартами	нию их проведения		
варной продукции	Контроль ведения	Применять стан-	Методы проведения	
	лабораторных жур-	дартные методы	анализов, испытаний	
	налов и своевремен-	контроля качества	и других видов ис-	

	1		
	ное оформление ре-	производимой про-	следований
	зультатов анализов и	дукции	
	испытаний согласно		
	системе менеджмен-		
	та качества	Dan a Camerana	Поболожения
	Обеспечение досто-	Разрабатывать но-	Лабораторное обо-
	верности, объектив-	вые методы контро-	рудование, кон-
	ности и требуемой	ля качества произ-	трольно-
	точности результатов испытаний	водимой продукции	измерительная аппа-
	тов испытании		ратура и правила ее
	Прородония онодила		Эксплуатации
	Проведение анализа		Система государственной аттестации
	результатов анали-		венной аттестации лабораторного обо-
	тического контроля качества нефти с		• •
	-		рудования, паспортизации и сертифи-
	предоставлением ежемесячного отчета		кации продукции
	в производственный		кации продукции
	отдел		
Профетанцарт «Спе	циалист по контролю	качества нефти и про	IVETOR EE HENENAÑOT-
профетандарт жене		ка тества пефти и прод фтебазе»	gykrob ce nepepaoor-
3.2.1. Организация	Контроль достовер-	Оценивать досто-	Оборудование лабо-
испытаний нефти и	ности, объективно-	верность результа-	ратории, принципы
продуктов ее пере-	сти и требуемой	тов	его работы и прави-
работки	точности результа-		ла эксплуатации
	тов испытаний		,
	Организация прове-	Производить прие-	Методы измерений,
	дения и проведение	мо-сдаточные анали-	контроля качества
	приемо-сдаточных	зы и испытания	нефти и продуктов
	анализов при приеме		ее переработки
	и отпуске нефти и		
	продуктов ее пере-		
	работки методами		
	испытаний, указан-		
	ным в нормативном		
	документе на нефте-		
	продукт, стандарт-		
	ными методами		
	Организация экс-	Эксплуатировать	Порядок определе-
	плуатации лабора-	лабораторное обо-	ния качества нефти
	торного оборудова-	рудование, произво-	и продуктов ее пере-
	кин	дить измерения	работки
	Разработка методик	Анализировать ре-	Нормы и требования
	и инструкций по те-	зультаты лаборатор-	промышленной и
	кущему контролю	ных исследований	пожарной безопас-
	лабораторного обо-		ности, правила по
	рудования, в том		охране труда и эко-
	числе по экспресс-		логической безопас-
	анализам на рабочих		ности
	местах		

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

№ Mo	№ He	№ Te	Наименование	Часы					
ду ля	де ли	МЫ	темы	Всего	Лек- ции	Кол- лок- ви	Лабо ра тор	Прак- ти- чес-	CPC
1	2	3	4	5	6	умы 7	ные 8	кие 9	10
	_		2 cem	естр		-		-	
1	1-4	1	Основные понятия аналитической химии. Теория ионных равновесий	44	12	-	-	-	32
2	5-12	2	Титриметрический метод анализа	50	10	-	16	-	24
3	13-16	3	Протолитические равновесия в растворе. Метод нейтрализации	50	10	-	16	-	24
Всег	0			144	32	-	32	•	80

5. Содержание лекционного курса

№	Всего	No	Тема лекции. Вопросы, отрабатываемые	Учебно-
темы	часов	лекции	на лекции	методическое
				обеспечение
1	2	3	4	5
1	6	1-3	Установочная лекция. Предмет и методы аналитической химии. Основные понятия. Классификация методов по различным признакам.	[1], [2], [3], [5], [8]
1	6	4-7	Теория ионных равновесий в аналитической химии. Закон действующих масс. Химическое равновесие. Факторы, влияющие на положение равновесия. Принцип Ле-Шателье. Электролитическая диссоциация. Теория Аррениуса-Оствальда. Степень и константа диссоциации. Теория сильных электролитов Дебая-Хюккеля. Ионная атмосфера. Активность ионов. Коэффициент активности. Ионная сила раствора	[1], [2], [5], [8], [9]
2	10	7-14	Основы титриметрического метода анализа. Сущность метода. Способы выражения концентрации растворов в титриметрии. Закон эквивалентов. Стандартные и стандартизованные растворы. Методы титрования: прямое, обратное, заместительное. Расчеты в титриметрии.	[1], [2], [5],
3	10	15-22	Протолитические равновесия в растворе. Понятие кислот и оснований. Понятие рН. Расчет рН сильных и слабых кислот и оснований, буферных рас-	[1], [2], [5], [6], [8]

г			
		творов, растворов гидролизующихся солей. Тео-	
		рия кислот и оснований Бренстеда-Лоури. Метод	
		кислотно-основного титрования	

6. Содержание коллоквиумов

Коллоквиумы учебным планом не предусмотрены

7. Перечень практических занятий

Практические занятия учебным планом не предусмотрены

8. Перечень лабораторных работ

№ темы	Всего часов	Наименование лабораторной работы. Задания, вопро- сы, отрабатываемые на лабораторном занятии	Учебно- методическое обеспечение
1	2	4	3
2	4	ЛР №1 Приготовление стандартного раствора буры	[8]
2	8	ЛР №2 Стандартизация раствора соляной кислоты по раствору буры	[8]
2	4	ЛР №3 Приготовление раствора щелочи	[8]
3	8	ЛР №4 Стандартизация раствора гидроксида калия по раствору соляной кислоты	[8]
3	8	ЛР №5 Контрольная задача: Определение содержания серной кислоты в аккумуляторном электролите методом нейтрализации	[8]

9. Задания для самостоятельной работы студентов

№	Всего	Задания, вопросы, для самостоятельного изучения (за-	Учебно-
темы	часов	дания)	методическое
			обеспечение
1	2	3	4
1	10	Закон действующих масс. Основные факторы, влияющие	[1], [2], [3], [5],
		на химическое равновесие. Принцип Ле-Шателье	[8]
1	22	Теория Дебая-Хюккеля. Активность, коэффициент актив-	[1], [2], [3], [5],
		ности, ионная сила раствора	[8]
2	5	Закон эквивалентов. Решение задач на титриметрию	[1], [2], [3], [5],

			[8]
2	5	Равновесие в системе труднорастворимый осадок – на- сыщенный раствор. Произведение растворимости. Спосо- бы уменьшения и увеличения растворимости осадков. Использование реакций осаждения в титриметрии	[1], [2], [3], [5], [8]
2	5	Окислительно-восстановительные реакции в титриметрии. Химическое равновесие в оксилительновосстановительных реакциях	[1], [2], [3], [5], [8]
2	22	Комплексные соединения в анализе. Комплексоны I, II, III, их строение и особенности взаимодействия с катионами металлов. Компплексонометрические индикаторы, принцип их действия	[1], [2], [3], [5], [8]
3	10	Протолитические равновесия в растворе. Ионное произведение воды. Понятие рН раствора. Расчет рН в растворах сильных и слабых кислот и оснований. Буферные растворы, типы буферных растворов. Буферная емкость. Расчет рН буферных систем.	[1], [2], [3], [5], [8]
3	14	Метод кислотно-основного титрования. Стандартные и стандартизованные растворы. Кислотно-основные индикаторы, принцип их действия. Возможности и метрологические характеристики метода.	[1], [2], [3], [5], [8]

10. Расчетно-графическая работа

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине»)

Не предусмотрена

11. Курсовая работа

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине»)

Не предусмотрена

12. Курсовой проект

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине»)

Не предусмотрен

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины Б.1.1.11 «Аналитическая химия и физико-химические методы анализа» должны сформироваться компетенции ОПК-3 и ПК-16

Под компетенцией ОПК-3 понимается готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире. Для формирования данной компетенции необходимы базовые знания фундаментальных разделов химии, физики, математики. Формирования данной компетенции параллельно происходит в рамках учебных дисциплин «Физическая химия», «Экология». Зачет проводится в виде компьютерного тестирования. Шкала оценивания следующая.

Оценка «зачтено» ставится, если студент достаточно владеет материалом, дает правильный ответ на 35-100% тестовых заданий.

При оценке «не зачтено» студент не представляет достаточно убедительных знаний, не владеет материалом – отвечает менее чем на 35 % тестовых заданий.

Код ком-	Этап	Показатели оце-			
пе тенции	форми-	нивания	Критерии о	ценивания	
	рова ния				
ОПК-3	(2 ce-	1. Знание физиче-	Промежуточная	Типовые задания	Шкала оценива-
	местр)	ских и теоретиче-	аттестация		Р ИН
		ских основ изу-	Текущий	Проведение лабо-	2 семестр
		ченных методов	контроль в ви-	раторных заня-	экзамен:
		анализа, аналити-	де проведения	тий	«Отлично»,
		ческих возможно-	практических		«хорошо»,
		стей каждого ме-	занятий, вы-	Вопросы и задачи	«удовлетвори-
		тода, области его	полнения ла-	модульных работ	тельно», «не-
		применения ос-	бораторных		удовлетвори-
		новное аппара-	занятий, отчета	Вопросы к экза-	тельно
		турное оформле-	по модулям	мену	
		ние, оценивать		Экзамен в виде	
		возможность ис-	Экзамен в виде	компьютерного	
		пользования того	компьютерно-	тестирования	
		или иного метода	го тестирова-		
		анализа для ре-	R ИН		
		шения конкрет-			
		ной задачи; из-			
		влекать простей-			
		шую информа-			
		цию на основании			
		рассмотрения			
		спектров;			

Под компетенцией ПК-16 понимается способность планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования. Для формирования данной компетенции необходимы базовые знания фундаментальных разделов химии, физики, математики. Формирования данной компетенции параллельно происходит в рамках учебных дисциплин «Общая и неорганическая химия», «Экология».

Код	Этап	Показатели оцени-			
компе	формиро-	вания	Критерии оценивания		
тенции	ва ния				
ПК-16		Владение практи-	Промежуточная	Типовые задания	Шкала оценивания
	(2семестр)	ческими навыками	аттестация		
		проведения титри-	Текущий кон-	Проведение ла-	2 семестр
		метрического, фо-	троль в виде	бораторных за-	экзамен:
		тометрического,	проведения	нятий	«Отлично», «хоро-
		рефрактометриче-	практических	Вопросы и зада-	шо», удовлетвори-

	,	потенцио-	занятий, выпол-	чи модульных	тельно», «неудовле-
	метрическ	,	нения лабора-	работ	творительно
	спектрофо	отометри-	торных занятий,	_	
	ческого	методов	отчета по моду-	Вопросы к экза-	
	анализа.		лям.	мену	
			Экзамен в виде	Экзамен в виде	
			компьютерного	компьютерного	
			тестирования	тестирования	

Для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины Б.1.1.11 «Аналитическая химия и физико-химические методы анализа», проводится промежуточная аттестация в виде зачета и экзамена. Процедура оценивания знаний, умений, навыков по дисциплине Б.1.1.11 «Аналитическая химия и физико-химические методы анализа» включает выполнение лабораторных работ, самостоятельной работы, модульных работ, тестовых заданий на зачете и экзамене. Лабораторные работы считаются успешно выполненными в случае предоставления в конце занятия отчета (протокола), включающего тему, ход работы, соответствующие расчёты, уравнения реакций и выводов по работе. Шкала оценивания – «зачтено / не зачтено». «Зачтено» за лабораторную работу ставится в случае, если она полностью правильно выполнена, при этом обучающимся показано свободное владение материалом по дисциплине. «Не зачтено» ставится в случае, если работа решена неправильно, тогда она возвращается студенту на доработку и затем вновь сдаётся на проверку преподавателю. В конце семестра студент сдает зачет в виде теста. Оценивание тестовых заданий проводится по принципу «зачтено» / «не зачтено». В качестве критериев оценивания используется количество правильных ответов. Самостоятельная работа считается успешно выполненной в случае успешного выполнения тестовых заданий. К зачету и экзамену по дисциплине студенты допускаются при предоставлении всех отчетов по всем лабораторным занятиям и успешном написании модульных заданий.

Экзамен проводится в виде компьютерного тестирования. Шкала оценивания следующая. Оценка «**отлично**» ставится, если студент дает грамотный и обоснованный ответ по существу поставленных вопросов, владеет материалом в полной мере — отвечает правильно на 80-100% тестовых заданий.

При оценке «**хорошо**» студент показывает глубокие знания по поставленным вопросам, владеет материалом достаточно — отвечает правильно на 60-79% тестовых заданий.

При оценке «удовлетворительно» студент не дает полного исчерпывающего ответа на поставленные вопросы, допускает отдельные неточности и погрешности при трактовке материала (владеет материалом недостаточно) — отвечает правильно на 35-59% тестовых заданий.

При оценке **«неудовлетворительно»** студент не представляет достаточно убедительных знаний, не владеет учебным материалом – отвечает менее чем на 35 % тестовых заданий.

Уровни освоения компонент компетенций в рамках дисциплины Б.1.1.11 «Аналитическая химия и физико-химические методы анализа»

Степени уровней освоения компетенции	Отличительные признаки
Пороговый	Знает: Знание физических и теоретических основ
	изученных методов анализа, аналитических воз-
	можностей каждого метода, области его приме-
	нения.
	Умеет: Эксплуатировать лабораторное оборудо-
	вание, производить измерения
	Владет: простейшими качественными навыками
	при проведении анализа

Продвинутый	Знает: основное аппаратурное оформление, оце-
	нивать возможность использования того или ино-
	го метода анализа для решения конкретной зада-
	чи;
	Умеет: Представляет механизмы химических ре-
	акций при проведении аналитических реакций,
	протекающих в технологических процессах и в
	окружающем мире
	вышест: практическими навыками проведения
	титриметрического, фотометрического, рефрак-
	тометрического, потенциометрического, спек-
	трофотометрического методов анализа.
Высокий	Знает: Способы организации проведения и само
	проведение приемо-сдаточных анализов при
	приеме и отпуске нефти и продуктов ее перера-
	ботки методами испытаний, указанным в норма-
	тивном документе на нефтепродукт, стандартны-
	ми методами.
	Умеет: использовать знание методов и способов
	проведения лабораторных и научных исследова-
	ний различных соединений нефтехимических
	производств и материалов на их основе для ре-
	шения задач профессиональной деятельности
	Владест: Навыками разработки методик и инст-
	рукций по текущему контролю лабораторного
	оборудования, в том числе по экспресс-анализам
	на рабочих местах

Примеры заданий для проверки сформированности компетенции

- 1. Исходный 0,1 н раствор соляной кислоты прореагировал на 70% при титровании 0,1 н раствором гидрооксида натрия. Вычислите рН полученного раствора.
- 2. Рассчитайте равновесные концентрации ионов $HCOO^-$ и H^+ в растворах с общей концентрацией 0,05 М HCOOH и 0,46 г/л HCOOH.
- 3. Вычислите молярную концентрацию ионов водорода и степень диссоциации в 0,01н растворе HNO₂.
- 4. К 15 мл 0,05н раствора уксусной кислоты прилили 20 мл 0,02 н раствора ацетата натрия. Определите рН полученного раствора.

Примеры заданий для контроля самостоятельной работы по отдельным разделам дисциплины

- 1. Рассчитайте рН 0,1М раствора NaHCO₃
- 2. Сколько мл 1% раствора формиата натрия необходимо добавить к 100 мл 0.05М раствора соляной кислоты, чтобы получить раствор с рH=3,7.
- 3. Вычислить концентрацию ионов водорода и степень диссоциации в 0,05 н растворе азотистой кислоты.
- 4. К 20 мл 0,25н бензойной кислоты прилили 25 мл воды. Определите концентрацию ионов водорода и степень диссоциации в полученном растворе.
- 5. Рассчитайте pH 0,5M раствора Na₂CO₃

- 6. Определите концентрацию ионов водорода и степень диссоциации в 3%-ном растворе бромноватистой кислоты (ρ =1 г/см³).
- 7. Сколько мл 3% раствора формиата натрия необходимо добавить к 100 мл 0,03М раствора соляной кислоты, чтобы получить раствор с рH=3,9.
- 8. Вычислить концентрацию ионов водорода и степень диссоциации в 0,5 н растворе аммиака.

Вопросы к экзамену по аналитической химии и физико-химическим методам анализа

- 1. Электролиты сильные и слабые. Константа и степень электролитической диссоциации. Закон Оствальда.
- 2. Перманганатометрия. Титрование в кислой, нейтральной и щелочной среде. Эквивалентные массы окислителей и восстановителей.
- 3. Сильные электролиты. Теория сильных электролитов Дебая и Гюккеля. Понятие об активности и ионной силе.
- 4. Иодометрия. Стандартные и рабочие растворы. Определение окислителей и восстановителей.
- 5. Активность и коэффициент активности сильных электролитов. Понятие об ионной силе.
- 6. Метод нейтрализации. Стандартные и рабочие растворы.
- 7. Понятие о рН. Расчет рН сильных и слабых электролитов.
- 8. Иодометрия. Приготовление рабочих и стандартных растворов.
- 9. Буферные растворы. Расчет рН буферных растворов.
- 10. Перманганатометрия. Определение восстановителей методом перманганатометрии.
- 11. Гидролиз солей по катиону и аниону. Расчет рН гидролизующихся солей.
- 12. Стандартные и стандартизованные рабочие растворы в методе нейтрализации.
- 13. Строение комплексных соединений. Теория Вернера.
- 14. Особенности метода иодометрии. Приготовление рабочих и вспомогательных растворов.
- 15. Комплексные соединения. Теория направленных валентностей и кристаллического по-
- 16. Приготовление перманганата калия, титрование в кислой и нейтральной среде.
- 17. Протолитическая теория кислот и оснований. Теория Бренстеда и Лоури. Протофильные и протогенные растворители.
- 18. Особенности метода перманганатометрии. Прямое и обратное титрование.
- 19. Правило произведения растворимости. Влияние одноименного иона на растворимость.
- 20. Приготовление рабочих растворов для титрования по методу нейтрализации.
- 21. Условия образования и растворения осадков. Правило произведения растворимости.
- 22. Определение окислителей и восстановителей методом иодометрии.
- 23. Влияние одноименных ионов на растворимость. Солевой эффект.
- 24. Приготовление перманганата калия для титрования в кислой среде. Определение окислителей методом перманганатометрии.
- 25. Электродные потенциалы. Направление окислительно-восстановительных реакций.
- 26. Определение окислителей методом перманганатометрии.
- 27. Стандартные и реальные окислительно-восстановительные потенциалы. Уравнение Нернста.
- 28. Приготовление стандартного рабочего раствора в методе иодометрии. Определение окислителей и восстановителей.
- 29. Расчет рН и рОН в растворах сильных и слабых электролитов.
- 30. Приготовление стандартных и рабочих растворов метода нейтрализации.

- 31. Константа и степень электролитической диссоциации. Закон разбавления Оствальда.
- 32. Рабочие растворы в методе иодометрии. Определение окислителей и восстановителей.
- 33. Активность и коэффициент активности сильного электролита. Ионная сила.
- 34. Особенности метода нейтрализации. Стандартные и стандартизованные растворы.
- 35. Буферное действие и буферная емкость.
- 36. Рабочие растворы в методе перманганатометрии. Прямое и обратное титрование.
- 37. Комплексные соединения в аналитической химии.
- 38. Приготовление рабочего раствора тиосульфата натрия и его стандартизация.
- 39. Гидролиз солей. Расчет рН гидролизующихся солей.
- 40. Приготовление рабочего раствора перманганата калия и его стандартизация.

Демонстрационная версия экзаменационного билета

Экзаменационный билет №Демоверсия

- 1. Электролиты сильные и слабые. Константа и степень электролитической диссоциации. Закон Оствальда.
- 2. Перманганатометрия. Титрование в кислой, нейтральной и щелочной среде. Эквивалентные массы окислителей и восстановителей.
- 3. Какая масса гидроксида бария была взята, если после растворения его в мерной колбе на 250 мл и разбавления водой до метки на титрование 20 мл полученного раствора израсходовано 22,4 мл 0,0988н раствора соляной кислоты.

14. Образовательные технологии

В соответствии с требованиями Φ ГОС ВО с целью реализации компетентностного подхода в учебном процессе по дисциплины используются следующие интерактивные формы проведения занятий.

- $1.\ \Phi$ рагмент интерактивного лекционного занятия по теме «Закон эквивалентов» Продолжительность интерактивного занятия $1\ \text{vac}$.
- 2. Фрагмент интерактивного лекционного занятия по теме «Стандартные растворы. Продолжительность интерактивного занятия 1 час.
- 3. Лабораторная работа по теме «Определение содержания серной кислоты в аккумуляторном электролите». Продолжительность занятия 2 часа.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУ-ЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

(позиции раздела нумеруются сквозной нумерацией и на них осуществляются ссылки из 5-13 разделов)

Основная

1. Хаханина, Т.И. Аналитическая химия: учеб. пособие / Т.И. Хаханина, Н.Г. Никитина. - 3-е изд., испр. и доп. - М.: Юрайт: ИД Юрайт, 2012. - 278 с. - Допущено Учебно-методич. объединением вузов по университетскому политехническому образованию. Экземпляры всего: 11

- 2. Отто, М. Современные методы аналитической химии. 3-е изд. М.: Техносфера, 2008. 544 с. Экземпляры всего: 5
- 3. Апарнев, А. И. Аналитическая химия и физико-химические методы анализа: учебное пособие / А. И. Апарнев, А. А. Казакова, Т. П. Александрова. Новосибирск : Новосибирский государственный технический университет, 2018. 139 с. ISBN 978-5-7782-3611-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/91180.html (дата обращения: 30.07.2020). Режим доступа: для авторизир. Пользователей
- 4. Валова, В. Д. Аналитическая химия и физико-химические методы анализа / Валова (Копылова) В. Д. Москва : Дашков и К, 2017. 200 с. ISBN 978-5-394-01301-0. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL :

https://www.studentlibrary.ru/book/ISBN9785394013010.html (дата обращения: 06.08.2021). - Режим доступа : по подписке.

Дополнительная

- 5. Тикунова, И. В. Справочное руководство по аналитической химии и физико-химическим методам анализа: учебное пособие / И. В. Тикунова, Н. В. Дробницкая, А. И. Артеменко и др. Москва: Абрис, 2012. 413 с. ISBN 978-5-4372-0075-9. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL:
- https://www.studentlibrary.ru/book/ISBN9785437200759.html (дата обращения: 06.08.2021). Режим доступа : по подписке.
- 6. Мельченко Г.Г. Аналитическая химия и физико-химические методы анализа. Количественный химический анализ [Электронный ресурс]: учебное пособие/ Мельченко Г.Г., Юнникова Н.В.— Электрон. текстовые данные.— Кемерово: Кемеровский технологический институт пищевой промышленности, 2005.— 104 с.— Режим доступа: http://www.iprbookshop.ru/14351.— ЭБС «IPRbooks», по паролю. *Методические указания*
- 7. Неверная О.Г. Оптические методы анализа / О.Г. Неверная, Н.А.Окишева, И.Г.Остроумов. Учебно-методическое пособие. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. 38 с. Режим доступа: http://techn.sstu.ru/WebLib/22540.pdf
- 8. Окишева Н.А. Титриметрические методы анализа / Н.А. Окишева, О.Г. Неверная, С.В.Маркина. Учебно-методическое пособие. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. 55 с. Режим доступа: http://techn.sstu.ru/WebLib/33071.pdf
- 9. Окишева Н.А. Потенциометрия / Н.А. Окишева, О.Г. Неверная, А.С.Мостовой. Методические указания к лабораторным работам по дисциплинам «Аналитическая химия», «Аналитическая химия и физико-химические методы анализа», «Физико-химические методы анализа» Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. 33 с. Режим доступа: http://techn.sstu.ru/WebLib/22858.pdf

Программное обеспечение и Интернет-ресурсы

Институт имеет электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренным рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе.

- 10. www.chem.msu.su
- 11. http://www.chemistry.ssu.samara.ru
- 12. Источники ИОС http://techn.sstu.ru

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа, текущего контроля и

промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения: 18 рабочих мест обучающихся; рабочее место преподавателя; классная доска; проекционный экран; мультимедийный проектор; компьютер, подключенный к Интернет; демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome

Учебная аудитория аналитической химии для проведения занятий лабораторного типа

Укомплектована оборудованием:

Столы и стулья с количеством посадочных мест 20, доска для написания мелом

Иономер И-500

Колориметр КФК-2, КФК-3

Кондуктомер Эксперт-002

РН-метр-миливольтметр-410

Прибор РН 637м-17-14

Прибор Т-107 титратор

Поляриметр круговой СМ-3

Рефрактометр ИРФ-454

Спектрофотометр СФ-26

10.Колбонагреватели: ESF-4100, ПЭ-0316;

- 11. Весы технохимические цифровые SCOUT SPU202;
- 12. Рефрактометр УРЛ лабораторный, универсальный с поверкой;
- 13. Сушилка лабораторная SUP-4
- 14. Потенционометр Р-307
- 15.Весы аналитические WA-31
- 16.Прибор РН-метр 340 17.Титровальные установки
- 18. Штативы
- 19. Электроплитка

20. Сушильный шкаф 2В-151

Рабочую программу составила к.х.н. Неверная О.Г.