Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Е<u>стественные и математические науки</u>»

РАБОЧАЯ ПРОГРАММА

по дисциплине

«Б.1.1.13 Коллоидная химия»

направления подготовки 18.03.01 «Химическая технология»

Профиль: «Нефтехимия»

форма обучения – заочная курс - 4семестр – 7 зачетных единиц – 5 часов в неделю всего часов – 180 в том числе: лекции - 6 коллоквиумы – нет практические занятия – нет лабораторные занятия – 8 самостоятельная работа – 166 зачет - нет экзамен - 7 РГР – нет контрольная работа – 1 курсовой проект – нет

Рабочая программа утверждена на заседании УМКН НФГД «27» июня 2022 года, протокол № $\underline{5}$ Председатель УМКН $\underline{\mathcal{N}}$ /Левкина Н.Л./

1. Цели и задачи дисциплины

Цель преподавания дисциплины "Коллоидная химия": изучить теоретическую основу гетерогенных процессов, в которых главное значение имеют поверхностные, межфазные явления.

Задачи изучения дисциплины:

- 1.1 Создать необходимую теоретическую основу для последующего изучения специальных дисциплин
 - 1.2 Развивать у студентов логическое химическое мышление
 - 1.3 Показать роль отечественных и зарубежных ученых в развитии этой науки
- 1.4 Использовать теоретические основы этого курса для разработки способов получения новых материалов с заданными свойствами, охраны окружающей среды, оптимизации технологических процессов.
- 1.5 Развить у студентов профессиональное химическое мышление, чтобы будущий бакалавр смог переносить общие методы научной работы в работу по специальности;

2. Место дисциплины в структуре ООП ВО

«Коллоидная химия» представляет собой дисциплину базовой части учебного цикла (Б.1.1.13) основной образовательной программы бакалавриата по направлению 18.03.01 «Химическая технология».

«Коллоидная химия» относится к группе химических дисциплин блока 1 и изучается:

- -после освоения курса «Общая и неорганическая химия», дающего базовые представления об основных законах, теориях и понятиях химии, свойствах неорганических веществ:
- -после освоения курса «Органическая химия», изучающего основы теории строения классов органических соединений, закономерности изменения их свойств;
- -после освоения курса «Аналитическая химия и физико-химические методы анализа», в рамках которого приводятся сведения о методах количественного и качественного анализа веществ:
- -после освоения курса «Физическая химия», изучающего основы химической термодинамики;
 - -вместе с изучением 2 части дисциплины «Физическая химия».

Знания, полученные обучающимися при изучении «Коллоидной химии», являются основой для последующего успешного освоения дисциплин профессионального цикла образовательной программы, таких как: ««Физико-химические основы нефтехимического синтеза», «Технология нефтехимического синтеза», «Химические реакторы», «Системы управления химико-технологическими процессами» и др.

3. Требования к результатам освоения дисциплины

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие общепрофессиональные компетенции при освоении ООП ВО, реализующей Федеральный Государственный образовательный стандарт:

- готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире (ОПК-3)
- готовность использовать знание свойств химических элементов, соединений и материалов на их основе для решения задач профессиональной деятельности (ПК-18).

В результате изучения дисциплины «Коллоидная химия» базовой части учебного цикла (Б.1.1.13) основной образовательной программы бакалавриата студент должен демонстрировать следующие результаты образования.

Обучающийся должен знать:

- основные понятия и соотношения термодинамики поверхностных явлений, основные свойства дисперсных систем.

Студент должен уметь:

- проводить расчеты с использованием основных соотношений термодинамики поверхностных явлений.

Студент должен владеть:

- методами измерения поверхностного натяжения, краевого угла, величины адсорбции и удельной поверхности, методами проведения дисперсионного анализа, синтеза дисперсных систем и оценки их агрегативной устойчивости.

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

$N_{\underline{0}}$	$N_{\underline{0}}$	No	Наименование темы	Часы/из них в интерактивной форм			орме		
MO	не	те		Всего	ЛЗ	КЛ	ЛР	ПР	CPC
ду	де	МЫ							
ЛЯ	ЛИ								
1	2	3	4	5	6	7	8	9	10
1		1	Молекулярно-кинетические и	45/1	1/1		2		42
			оптические свойства дисперсных						
			систем						
2		2	Поверхностные явления и	46/2	2/2		2		42
			адсорбция						
3		3	Получение и очистка дисперсных	44	2				42
			систем						
4		4	Стабилизация и коагуляция	45	1		4		40
			дисперсных систем						
Bcei	0		·	180/3	6/3		8		166

5. Содержание лекционного курса

$\mathcal{N}_{\underline{0}}$	Всего	$N_{\underline{0}}$	Тема лекции. Вопросы, отрабатываемые на лекции	Учебно-
темы	часов	лекции		методическое
				обеспечение
1	2	3	4	5
1	1	1	Основные понятия коллоидной химии.	[1-4] ,[6]
			Классификация коллоидных систем. Молекулярно-	
			кинетические свойства коллоидных систем:	
			броуновское движение, осмос, диффузия.	
			Седиментация суспензий и седиментационно-	
			диффузионное равновесие коллоидных частиц.	
			Оптические свойства дисперсных систем:	
			рассеяние света, поглощение света и окраска золей,	
			ультрамикроскопия и электронная микроскопия.	
2	2	1-2	Поверхностные явления в дисперсных системах.	[1-4] ,[6]
			Термодинамические функции поверхностного слоя.	
			Адсорбция на границе раствор-газ. Поверхностное	
			натяжение. Адсорбция из растворов. ПАВ и ПИАВ.	
			Уравнение адсорбции Гиббса. Изотермы адсорбции.	
			Теория мономолекулярной адсорбции Лэнгмюра.	
			Полимолекулярная адсорбция. Теория БЭТ.	
3	2	2-3	Получение и очистка дисперсных систем.	[1-4],[7]
			Диспергационные и конденсационные методы.	

4	1	3	Стабилизация и коагуляция дисперсных систем.	[1-3],[5-7]
			Влияние на коагуляцию различных факторов.	
			Коагуляция электролитами. Устойчивость	
			коллоидных систем. Электрокинетические явления.	
			Электрокинетический потенциал.	

6. Содержание коллоквиумов

Не предусмотрены учебным планом

7. Перечень практических занятий

Не предусмотрены учебным планом

Перечень лабораторных работ

№ темы	Всего часов	Наименование лабораторной работы. Задания, вопросы, отрабатываемые на лабораторном занятии	Учебно- методическое обеспечение
1	2	3	4
1	2	1. Седиментационный анализ 2. Определение среднего размера коллоидных частиц по характеристической мутности системы.	[9]
2	2	1. Определение параметров адсорбционного слоя. 2. Определение поверхностного натяжения для гомологического ряда спиртов. 3. Изучение адсорбции пав из растворов на твердом адсорбенте.	[8]
4	4	Получение, коагуляция и стабилизация лиофобных дисперсных систем	[10]

9. Задания для самостоятельной работы студентов

№ темы	Всего Часов	Задания, вопросы, для самостоятельного изучения (задания)	Учебно- методическое обеспечение
1	2	3	4
1	42	Классификация дисперсных систем. Значение коллоидной химии в природе и народном хозяйстве. Оптические свойства золей с несферическими частицами.	[1-7]
2	42	Поверхностное натяжение как мера свободной поверхности. Уравнение Гиббса-Гельмгольца для поверхностной энергии. Сорбция. Уравнения изотермы адсорбции. Адсорбенты и их характеристики.	[1-7]
3	42	Агрегативная и седиментационная (кинетическая) устойчивость дисперсных систем. Роль стабилизатора в процессе получения дисперсных систем. Очистка дисперсных систем.	[2] [3]
4	40	Структурно-механические свойства дисперсных систем. Свободнодисперсные системы.	[1-6],[11-16]

В результате освоения заданий самостоятельной работы студент должен подготовиться к выполнению лабораторных работ, а также к экзамену.

10. Расчетно-графическая работа

Не предусмотрена учебным планом

11. Контрольное задание

Предусмотрено выполнение контрольных заданий, включающих 6 теоретических вопросов и расчетных задач. Они выполняются в соответствии с разработанными методическими указаниями [11].

12. Курсовой проект

Не предусмотрен учебным планом

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Оценивание уровня сформированности профессиональных компетенций Выпускник должен обладать:

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины Б.1.1.13. «Коллоидная химия» должны сформироваться компетенции ОПК-3 и ПК-18.

Под компетенцией ОПК-3 понимается готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире

Под компетенцией ПК-18 понимается готовность использовать знание свойств химических элементов, соединений и материалов на их основе для решения задач профессиональной деятельности. Формирования данных компетенций происходит последовательно, в рамках изучения учебных дисциплин «Общая и неорганическая химия», «Органическая химия», «Аналитическая химия и физико-химические методы анализа», «Физическая химия».

Оценивание уровня сформированности профессиональных компетенций

Уровни сформированности компетенции	Основные признаки уровня
Пороговый	
уровень	
компетенции:	
ОПК-3 ПК-18	знает базовую терминологию, относящуюся к поверхностным явлениям и дисперсным системам, основные понятия и законы коллоидной химии; умеет связать фундаментальные законы коллоидной химии с химическими явлениями и явлениями в природе; владеет лабораторным оборудованием для проведения экспериментальной работы.
	знает базовую терминологию, относящуюся к поверхностным явлениям и дисперсным системам, современные методы исследования дисперсных систем; умеет работать со справочной литературой, использовать приборы, указанные в описании, для проведения лабораторных работ.
Продвинутый	

уровень	
компетенции:	знает и понимает основные понятия и законы коллоидной химии;
ОПК-3	умеет проиллюстрировать связь фундаментальных законов
	коллоидной химии с химическими процессами и явлениями в
	<u> </u>
	природе; использует теоретические знания для объяснения
	свойств материалов и механизма химических процессов; владеет
	навыками физико-химических исследований и методами
	регистрации результатов эксперимента
ПК-18	France France Control France
1111-10	AVACE GOODNIG TODAYAYA TOTAYA OTTAYAGAYAYAAA MADADAYAAA
	знает базовую терминологию, относящуюся к поверхностным
	явлениям и дисперсным системам; современные методы
	исследования в дисперсных системах; способы представления
	полученного результата умеет работать со справочной
	литературой, выбирать и использовать методики и оборудование
	для проведения экспериментальных исследований, корректно
	1 11
	объяснять полученные результаты.
Высокий уровень	
компетенции:	
ОПК-3	умеет проиллюстрировать связь фундаментальных законов
	коллоидной химии с химическими процессами и явлениями в
	природе; использует теоретические знания для объяснения
	свойств материалов и механизма химических процессов; умеет
	критически осмыслить полученные знания; владеет навыками
	физико-химических исследований и методами регистрации
	результатов эксперимента и навыками применения теоретических
	законов к решению практических вопросов.
	Sakonob k pememio npakin terkim benpoeeb.
HII. 10	
ПК-18	
	знает базовую терминологию, относящуюся к поверхностным
	явлениям и дисперсным системам; современные методы
	исследования в дисперсных системах; способы представления
	полученного результата умеет работать со справочной
	литературой, выбирать и использовать методики и оборудование
	1 11 / 1
	для проведения экспериментальных исследований, корректно
	объяснять полученные результаты, совершенствовать методики
	проведения испытаний.

Код	Этап		Крі	итерии оценива	ния
компете	форм	Цели освоения	аттестация	Типовые	Шкала оценивания
нции	И-			задания	
	рова-				
	ния				
ОПК- 3	7	Формирование	контроль в форме:	Лабораторн	Зачтено/ не зачтено
	семес	способности	- отчет по	ые работы,	
	тр	планировать и	лабораторным		1-3 балла –
		проводить физические	занятиям;	практически	компетенции не
		и химические		е задания,	сформированы
		эксперименты,	- отчет по		4-10 баллов –
		проводить обработку	контрольной	вопросы к	компетенции
		их результатов и	работе	экзамену	сформированы
		оценивать			по 5-ти балльной

		погранциости			шкале
		погрешности,	27.22.72.7		Шкалс
		математически	- экзамен		
		моделировать			
		физические и			
		химические процессы			
		и явления, выдвигать			
		гипотезы и			
		устанавливать			
		границы их			
		применения			
ПК-18	7	Формирование	контроль в форме:		
	семес	способности	- отчет по	Лабораторн	Зачтено/ не зачтено
	тр	использовать знание	лабораторным	ые работы,	
		свойств химических	занятиям;		1-3 балла —
		элементов,		практически	компетенции не
		соединений и	- отчет по	е задания,	сформированы
		материалов на их	контрольной		4-10 баллов –
		основе для решения	работе		компетенции
		задач		вопросы к	сформированы
		профессиональной	- экзамен	экзамену	по 5-ти балльной
		деятельности			шкале

Для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины Б.1.1.13 «Коллоидная химия», проводится промежуточная аттестация в виде экзамена. Процедура оценивания знаний, умений, навыков по дисциплине Б.1.1.13 «Коллоидная химия» включает выполнение лабораторных работ, самостоятельной работы, контрольной работы, тестовых заданий на экзамене. Лабораторные работы считаются выполненными в случае предоставления в конце занятия отчета (протокола), включающего тему, ход работы, соответствующие расчёты и выводы по работе. Шкала оценивания — «зачтено / не зачтено». «Зачтено» за лабораторную работу ставится в случае, если она полностью правильно выполнена, при этом обучающимся показано свободное владение материалом по теме работы. «Не зачтено» ставится в случае, если работа решена неправильно, тогда она возвращается студенту на доработку и затем вновь сдаётся на проверку преподавателю. Самостоятельная работа считается выполненной в случае решения контрольной работы. К экзамену по дисциплине студенты допускаются при предоставлении всех отчетов по всем лабораторным занятиям и контрольной работы.

Экзамен проводится в виде компьютерного тестирования. В качестве критериев оценивания используется количество правильных ответов. Шкала оценивания следующая. Оценка «отлично» ставится, если студент показывает четкий грамотный и обоснованный уровень знаний по существу поставленных вопросов — дает правильный ответ на 80-100% тестовых заданий.

При оценке **«хорошо»** студент показывает глубокие знания по поставленным вопросам – отвечает правильно на 60-79% тестовых заданий.

При оценке «удовлетворительно» студент не дает полного исчерпывающего ответа на поставленные вопросы, допускает отдельные неточности и погрешности при трактовке материала – отвечает правильно на 35-59% тестовых заданий.

При оценке **«неудовлетворительно»** студент не представляет достаточно убедительных знаний — отвечает менее чем на 35 % тестовых заданий.

Текущий контроль

Не предусмотрен учебным планом

Тестовые задания для экзамена размещены на сайте ИОС института http://techn.sstu.ru/new/SubjectFGOS/Default.aspx?kod=246&tip=12

Вопросы для экзамена

Классификация дисперсных систем. Значение коллоидной химии в природе и народном хозяйстве.

Поверхностное натяжение как мера свободной поверхности. Уравнение Гиббса-Гельмгольца для поверхностной энергии. Большой запас свободной поверхностной энергии у дисперсных систем и их принципиальная термодинамическая неравномерность.

Поверхность жидкость-газ и жидкость-жидкость. Поверхностное натяжение растворов. Адсорбция поверхностно-активных веществ, уравнение Гиббса, вывод и анализ. Правило Траубе.

Условие растекания жидкостей. Когезия и адгезия. Строение и свойства адсорбционных слоев. Газообразные и конденсированные монослои. Весы Ленгмюра. Ориентация дифильных молекул между фазами. Адсорбция на границе раздела твердое тело-газ. Эмпирическое уравнение изотермы адсорбции. Теория мономолекулярной адсорбции. Вывод и анализ уравнения Лэнгмюра. Теория полимолекулярной адсорбции. Характеристическая кривая. Применение уравнения БЭТ для определения площади поверхности адсорбента.

Потенциальная теория адсорбции и теория объемного заполнения микропор М.М.Дубинина. Уравнение адсорбции ТОЗМ.

Агрегативная и седиментационная (кинетическая) устойчивость дисперсных систем. Роль стабилизатора в процессе получения дисперсных систем.

Получение дисперсных систем методами физической и химической конденсации. Механизм и кинетика процесса конденсации. Примеры химической конденсации, формулы мицелл.

Броуновское движение, его тепловая природа. Средний сдвиг. Флуктуации плотности в коллоидном растворе. Диффузия. Вывод уравнения Эйнштейна для коэффициента диффузии. Связь между средним сдвигом и коэффициентом диффузии. Седиментационно-диффузионное равновесие; уравнение Лапласа-Перрена. Седиментация. Основы седиментационного анализа. Ультрацентрифугирование.

Электрокинетические явления (электрофорез, электроосмос). Электрокинетический потенциал.

Тестовые задания по дисциплине

Примеры заданий для проведения промежуточной аттестации по итогам освоения дисииплины

- С увеличением длины углеводородного радикала в гомологическом ряду ПАВ величина предельной адсорбции
 - растет
 - не изменяется
 - уменьшается
- Изотермическая работа обратимого процесса переноса 1 моля вещества из объемной фазы в поверхностный слой называется
 - работой осмотических сил
 - адсорбционным потенциалом
 - работой процесса самодиффузии
- Различные типы межфазного взаимодействия, наблюдаемые в гетерогенных системах, харктеризуются понятиями: (1) когезия; (2) смачивание; (3) растекание; (4) адгезия, которые имеют следующий смысл:
- (А) взаимодействие жидкости с твердым телом или с другой жидкостью при наличии контакта трех несмешивающихся фаз;

- (Б) притяжение атомов и молекул в объеме фазы;
- (В) взаимодействие между приведенными в контакт поверхностями конденсированных фаз разной природы;
- (Γ) взаимодействие между твердым телом и нанесенной на его поверхность жидкости в случае, когда работа адгезии жидкости превышает работу когезии жидкости.

Укажите вариант, в котором правильно соотнесены каждое понятие (цифра) и его содержание (буква).

- 15, 4B, 3Γ
- 4А, 3Б, 1В
- 4B, 2Γ, 1A

Оценка уровня сформированности профессиональной компетенции

- ➤ Профессиональная компетенция будет считаться сформированной на **пороговом** уровне при наличии правильных ответов по тестам от 35 до 59%.
- ➤ Профессиональная компетенция будет считаться сформированной на *продвинутом* уровне при наличии правильных ответов по тестам от 60% до 79%.
- ➤ Профессиональная компетенция будет считаться сформированной на **высоком** уровне при наличии правильных ответов по тестам 80% и более.

При этом экзамен необходим, либо для подтверждения уровня оценки сформированности профессиональной компетенции по тестам, либо дает возможность повышения оценки уровня сформированности профессиональной компетенции.

14. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающегося.

Тема занятия	Вид занятия	Интерактивная форма
1. Молекулярно-	Лекция	Метод проблемного
кинетические свойства		изложения –
коллоидных систем:		стимулирование студентов
броуновское движение,		к самостоятельному поиску
осмос, диффузия.		знаний, необходимых для
2. Термодинамические		решения конкретной
функции поверхностного		проблемы
слоя. Адсорбция на границе		
раствор-газ. Поверхностное		
натяжение.		

В рамках учебного курса предусмотрены лекционные занятия с использованием презентаций, выполненных в редакторе Microsoft Office Power Point 2010 по всем темам (100%). (Программное обеспечение: Microsoft Office Power Point 2010).

Таким образом, обучение ведется с как помощью традиционных - пассивных методов - чтение лекций, проведение лабораторных занятий, так и активных, в том числе интерактивных, больше предполагающих демократический стиль, основанный на субъект-субъектных отношениях между его участниками (обучающим и обучающимися). При чтении проблемных лекций образовательный процесс протекает таким образом, что практически все обучающиеся оказываются вовлеченными в процесс познания.

Такие занятия, в сочетании с внеаудиторной самостоятельной работой, должны формировать и развивать профессиональные навыки обучающегося.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

(позиции раздела нумеруются сквозной нумерацией и на них осуществляются ссылки из 5-13 разделов)

Основная

- 1. Физическая и коллоидная химия: учебник / А.П. Беляев, В.И. Кучук: под ред. А.П. Беляева. 2-е изд., перераб. и доп. М.: ГЕОТАР-Медиа, 2014. 752 с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785970427668.html ЭБС. «Электронная библиотека ВУЗа»
- **2**. Физическая и коллоидная химия: задачник / учебн. пособие для вузов/ А.П. Беляев и др. ; под ред. А.П. Беляева. М.: ГЕОТАР-Медиа, 2014. —288 с.: ил. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785970428443.html ЭБС. «Электронная библиотека ВУЗа»
- 3. Рябухова Т.О. Дисперсные системы: Учебное пособие по дисциплинам «Поверхностные явления и дисперсные системы», «Коллоидная химия» Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2013 44 с. Режим доступа: http://techn.sstu.ru/WebLib/24549.pdf
- **4.** Белик В.В., Киенская К.И. Физическая и коллоидная химия /В.В.Белик, К.И. Киенская М.: Академия, 2008. –288 с. Экземпляры всего: 20.

Дополнительная

- **5**. Ролдугин В.И. Физикохимия поверхности /В.И.Ролдугин М.: Интеллект, 2008.- 568 с. Экземпляры всего: 9
- **6**. Нанотехнологии. Азбука для всех/ред. Третьяков Ю.Д. М.: ФИЗМАТЛИТ, 2008.-368 с Экземпляры всего: 5
- 7. Брянский, Б. Я. Коллоидная химия: учебное пособие / Б. Я. Брянский. Саратов : Вузовское образование, 2017. 104 с. ISBN 978-5-4487-0038-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/66632.html

Методические указания

- 8. Рябухова Т.О. [Электр. ресурс] Адсорбция из растворов /Учебно-методическое пособие по коллоидной химии. 34 с. 1эл.опт.диск (CD-ROM) Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. Электронный аналог печатного издания. —
- Режим доступа: http://techn.sstu.ru/new/SubjectFGOS/Default.aspx?kod=246&tip=4
- **9.** Окишева Н.А., Рябухова Т.О. Седиментационный анализ /Методические указания к выполнению лабораторной работы по дисциплинам «Поверхностные явления и дисперсные системы», «Коллоидная химия» Саратов, 2010.-15 с. Режим доступа: http://techn.sstu.ru/WebLib/23026.pdf
- **10**. Рябухова Т.О., Окишева Н.А. Оптические свойства коллоидных систем/ Методические указания к выполнению лабораторной работы по дисциплинам «Поверхностные явления и дисперсные системы», «Коллоидная химия» Энгельс, 2011.- 24 с.

Режим доступа: http://techn.sstu.ru/WebLib/23025.pdf

11. Рябухова Т.О. Коллоидная химия/ Учебное пособие для выполнения контрольной работы по дисциплинам «Поверхностные явления и дисперсные системы», «Коллоидная химия» - Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2012.- 48 с. Режим доступа: http://techn.sstu.ru/WebLib/23028.pdf

Интернет-ресурсы

- 12. Библиотека Российской академии наук (БАН) www.rasl.ru
- 13. Российская государственная библиотека (РГБ) www.rsl.ru

- 14. Библиотека Российского химико-технологического университета им. Д.И. Менделеева Академический научно-издательский, http://muctr.ru /Доклады Академии наук производственно-полиграфический и книгораспространительский центр Российской академии наук "Издательство "Наука": Известия высших учебных заведений. Серия: Химия Ивановский государственный химическая технология химико-технологический университет: Коллоидный журнал Академический научно-издательский, производственнополиграфический и книгораспространительский центр Российской академии наук "Издательство /
- 15. Библиотека МГУ им М.В. Ломоносова. Химический факультет МГУ www.msu.ru
- 16. Российская национальная библиотека (РНБ) www. nlr.ru

Источники ИОС

 $\underline{http://techn.sstu.ru/new/SubjectFGOS/Default.aspx?kod{=}246}$

Коллоидная химия

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения: 20 рабочих мест обучающихся; рабочее место преподавателя; классная доска; проекционный экран; мультимедийный проектор; компьютер, подключенный к Интернет; демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome

Учебная аудитория физической химии для проведения занятий лабораторного типа

Столы и стулья с количеством посадочных мест 20, доска для написания мелом Укомплектована оборудованием:

- Весы торсионные ВТ-500
- Сушилка лабораторная SUP-4
- Весы технохимические цифровые SCOUT SPU202,

She -

- Секундомер
- Электроплитка
- Фотоэлектроколориметр КФК-2, КФК-3
- Штативы

Автор(ы): к.х.н.

Неверная О.Г.