Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Естественные и математические науки»

РАБОЧАЯ ПРОГРАММА

по дисциплине Б.1.1.8 «Физика» направления подготовки 09.03.01 «Информатика и вычислительная техника» Профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем»

форма обучения – очная $\kappa ypc - 1,2$ семестр -2,3,4зачетных единиц – 10 (4,4,2) часов в неделю -4,4,2всего часов -360 (144,144,72) в том числе: лекции -80 (32,32,16) коллоквиумы – нет практические занятия – нет лабораторные занятия -80 (32,32,16) самостоятельная работа –200 (80,80,40) зачет – 4 семестр зачет с оценкой – 3 семестр экзамен – 2 семестр РГР – нет курсовая работа – нет курсовой проект – нет

Рабочая программа обсуждена на заседании кафедры ЕМН «27» июня 2022 года, протокол № 9

Заведующий кафедрой

<u>/Жилина Е.В./</u>

Рабочая программа обсуждена на УМКН ИВЧТ «27» июня 2022 года, протокол № 5

Председатель УМКН

6. пси /жилина Е.В./

1. Цели и задачи дисциплины

Целями освоения дисциплины Б.1.1.8 «Физика» являются ознакомление студентов с современной физической картиной мира, приобретение навыков экспериментального исследования физических явлений и процессов, изучение теоретических методов анализа физических явлений, обучение грамотному применению положений фундаментальной физики к научному анализу ситуаций, с которой инженеру приходится сталкиваться при создании новой техники, а так же выработки у студентов основ естественнонаучного мировоззрения и ознакомления с историей развития физики и основных её открытий. Задачами курса физики являются:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и технологий;
- освоение основных физических теорий, позволяющих описать явления в природе и пределов применяемости этих теорий для решения современных и перспективных технологических задач;
- формирования у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина Б.1.1.8 «Физика» представляет собой дисциплину обязательной части блока 1 основной профессиональной образовательной программы подготовки бакалавров по направлению 09.03.01 «Информатика и вычислительная техника». Физика составляет универсальную фундаментальную базу науки и техники.

Приступая к изучению физики, студент должен знать физику в пределах программы средней школы. Для успешного освоения разделов физики необходимы знания умения и компетенции, формируемые дисциплиной «Математика»:

- основы аналитической геометрии на плоскости и в пространстве.
- основы дифференциального и интегрального исчисления.
- дифференциальные уравнения первого и второго порядков.
- элементы теории вероятности и математической статистики.

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование следующих компетенций: УК-1 - способность осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;

Студент должен знать:

- основные физические явления и основные законы физики; границы их применяемости, применение законов в важнейших практических приложениях;
- основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения;
- фундаментальные физические опыты и их роль в развитии науки;
- назначение и принципы действия важнейших физических приборов.

Студент должен уметь:

- объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий;
- указать, какие законы описывают данное явление или эффект;
- истолковывать смысл физических величин и понятий;
- записывать уравнения для физических величин в системе СИ;
- работать с приборами и оборудованием современной физической лаборатории;
- использовать различные методики физических измерений и обработки экспериментальных данных;
- использовать методы физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

Студент должен владеть:

- навыками использования основных общефизических законов и принципов в важнейших практических приложениях;
- навыками применения основных методов физико-математического анализа для решения естественнонаучных задач;
- навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории;
- навыками обработки и интерпретирования результатов эксперимента;
- навыками использования методов физического моделирования в инженерной практике.

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

2 семестр

$N_{\underline{0}}$	No	$N_{\underline{0}}$				Часы		
Мо-	Неде	Te	Наименование	_	Лек-	Коллок-	Лабора-	GD G
ду-	ЛИ	МЫ	раздела	Всего	ции	виумы	торные	CPC
ЛЯ								
1	2	3	4	5	6	7	8	9
1	1-5	1	Физические основы	50	10	-	10	30
			механики					
1	6-10	2	Колебания и волны	45	10	-	10	25
2	11-16	3	Молекулярная физика и	49	12	-	12	25
			термодинамика					
Всего	Всего 2 семестр					_	32	80

3 семестр

1	2	3	4	5	6	7	8	9
3	1-5	4	Электростатика	43	10	-	10	23
3	6-10	5	Постоянный электрический ток	43	10	-	10	23
4	11-16	6	Электромагнитные явления	58	12	-	12	34
Всего	3 семес	тр		144	32	-	32	80

1	2	3	4	5	6	7	8	9
5	1-3	7	Волновая оптика	19	5	-	4	10
5	3-5	8	Квантовая оптика	19	5	-	4	10
5	6-7	9	Атомная физика	17	3	-	4	10
6			Элементы физики твёрдого тела	17	3	-	4	10
Всего	4 семес	тр		72	16	-	16	40

5. Содержание лекционного курса

№	Всего	No	Тема лекции. Вопросы, отрабатываемые на	Учебно-
темы	часов	лекции	лекции	методическое
				обеспечение
1	2	3	4	5
1	2	1	Вводная лекция. Предмет физики и связь со	1,2,6,7,10-14
			смежными науками. Методы исследования	
			физических явлений. Развитие и взаимное влияние физики и техники. Новейшие	
			влияние физики и техники. Новейшие достижения физики.	
			Кинематика материальной точки. Системы	
			отсчета. Способы задания движения.	
			Равномерное и равнопеременное движение.	
			Скорость и ускорение. Нормальное и	
			тангенциальное ускорение.	
1	3	1	Динамика материальной	6,7,10-14
			точки. Сила и масса. Законы Ньютона. Закон	
1	2	1	сохранения импульса. Реактивное движение	C 7 10 14
1	3	1	Работа постоянной и переменной силы. Энергия.	6,7,10-14
			Кинетическая энергия. Потенциальное поле сил и потенциальная энергия. Закон сохранения	
			энергии в механике.	
1	3	2	Динамика твердого тела.	6,7,10-14
			Поступательное и вращательное движение тела.	, ,
			Момент силы. Кинетическая энергия	
			вращающегося тела. Момент инерции. Основной	
			закон динамики вращательного движения. Закон	
			сохранения импульса.	
2	3	2	Механические колебания.	6,7,10-14
			Гармоническое колебательное движение и его	0,7,10 14
			основные характеристики. Векторная диаграмма.	
			Собственные незатухающие и затухающие	
			колебания. Маятники.	
			Вынужденные колебания. Явление резонанса.	
			Сложение колебаний одинаковой частоты и	
			одного направления.	C = 10 14
2	3	2	Волны в упругой среде. Продольные и	6,7,10-14
			поперечные волны. Уравнение бегущей волны.	

			Волновые поверхности. Энергия, переносимая волной. Интерференция волн.	
3	3	3	Основные положения молекулярно- кинетической теории (МКТ). Основное уравнение МКТ. Закон распределения молекул по скоростям Максвелла. Барометрическая формула. Распределение Больцмана. Число столкновений и средняя длина свободного пробега молекул.	6,7,10-14
3	6	3	Распределение энергии по степеням свободы. Внутренняя энергия идеального газа. Теория теплоёмкости идеального газа. Явления переноса и молекулярно-кинетическая теория этих явлений.	6,7,10-14
3	6	3	Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Экспериментальные изотермы реального газа. Фазы и фазовые переходы. Основные понятия. Уравнение Клайперона_Клаузиуса. Диаграмма состояния. Тройная точка.	6,7,10-14
Всего	32 часа			

№	Всего	$N_{\underline{0}}$	Тема лекции. Вопросы, отрабатываемые на	Учебно-
темы	часов	лекции	лекции	методическое
				обеспечение
1	2	3	4	5
4	3	1	Основные положения электростатики. Закон Кулона. Электростатическое поле. Принцип суперпозиций. Работа по переносу заряда в электростатическом поле. Потенциал и разность потенциалов. Связь между напряженностью поля и потенциалом	3,4,8,15,16,22
4	3	1	Диэлектрикив электростатическом поле. Полярные и неполярные диэлектрики. Поляризация диэлектриков. Вектор электрической индукции. Проводники в в проводниках. Проводники во внешнем электростатическом поле	3,4,8,15,16,22
4	3	1	Электроёмкость. Ёмкость плоского и цилиндрического конденсаторов. Энергия заряженных проводников и электростатического поля.	3,4,8,15,16,22

5	3	2	Законы электрического тока. Сила	3,4,8,15,16,22
			тока и плотность тока. Законы Ома для участка	
			цепи и для замкнутой цепи. Работа, мощность и	
			тепловое действие тока.	
			Мощность и к.п.д. источников Э.Д.С. Правила	
			Кирхгофа и их применение.	
5	3	2	Электрический ток в жидкостях	3,4,8,15,16,22
			и газах. Электролитическая диссоциация.	, , , , ,
			Электролиз. Законы Фарадея для электролиза.	
			Теория электролитической проводимости.	
			Технические применения электролиза.	
6	3	2	Магнитное поле. Магнитное поле и его	3,4,8,15,16,22
		_	характеристика. Закон Био-Савара-Лапласа.	-,-,-,,
			Магнитное поле прямого и кругового токов.	
			Магнитное поле соленоида. Действие магнитного	
			поля на ток. Закон Ампера.	
			Сила Лоренца. Контур с током в магнитном поле.	
6	7	3	Закон Фарадея для электромагнитной индукции.	3,4,8,15,16,22
Ū	,		Применение явления электромагнитной	0,1,0,10,10,22
			индукции.	
			Самоиндукция. Явление взаимной индукции.	
			Энергия магнитного поля. Трансформаторы.	
6	7	3	Магнитные моменты атомов и молекул. Вектор	3,4,8,15,16,22
ŭ	,		намагничивания. Диамагнетики, парамагнетики,	-, ·,··,-·,-·,-
			ферромагнетики.	
Всего	32 часа	<u> </u>	Askowani	
	111011			

№ темы	Всего часов	№ лекции	Тема лекции. Вопросы, отрабатываемые на лекции	Учебно- методическое обеспечение
1	2	3	4	5
7	1	1	Развитие представлений о природе света. Основные фотометрические величины и единицы. Законы геометрической оптики по волновой теории.	4,5,9-12
7	1	1	Интерференция света. Условие максимума и минимума при интерференции световых волн. Пространственная и временная когерентность в оптике. Интерференция от двух щелей. Интерференция света в тонких пленках. Применение интерференции.	4,5,9-12
7	1	1	Дифракция света. Основные понятия. Принцип Гюйгенса-Френеля. Дифракция в расходящихся лучах. Зоны Френеля. Дифракционная решетка. Голография.	4,5,9-12
	1	1	Дисперсия света. Нормальная и аномальная дисперсия.	4,5,9-12
7	1	2	Поляризация света. Методы получения поляризованного света. Оптическая активность. Применение поляризованного излучения	4,5,9-12
8	1	2	Тепловое излучение. Основные понятия определения. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.	4,5,9-12

8	1	2	Квантовые оптические явления. Фотоны, их свойства и параметры. Внешний	4,5,9-12
			фотоэффект и его законы. Теория фотоэффекта Эйнштейна.	
9	1	2	Теория атома по Бору. Спектр атома водорода. Развитие представлений о строении атомов.	4,5,9-12
9	2	3	Планетарная модель атома Резерфорда. Постулаты Бора. Теория Бора для водородоподобных атомов и ее недостатки.	4,5,9-12
9	2	3	Атом и атомные спектры. Атом водорода в квантовой механике. Спин электрона. Принцип Паули. Многоэлектронные атомы. Электронные слои и оболочки. Таблица Менделеева.	4,5,9-12
9	2	3	Рентгеновское излучение. Рентгеноструктурный анализ. Спонтанное и вынужденное излучения. Оптические квантовые генераторы. Атомные и молекулярные спектры.	4,5,9-12
10	2	3	Элементы физики твёрдого тела. Зонная теория твёрдых тел. Собственная и примесная проводимость полупроводников. Контакт электронного и дырочного полупроводников Фотопроводимость полупроводников.	4,5,9-12
Всего	16 часо	В		

6. Содержание коллоквиумов

Не предусмотрены учебным планом

7. Перечень практических занятий

Не предусмотрены учебным планом

8. Перечень лабораторных работ

2 семестр

№ темы	Всего часов	Наименование лабораторной работы. Задания, вопросы, отрабатываемые на лабораторном	Учебно- методическое
TOMBI	часов	занятии	обеспечение
1	2	3	4
1	4	Определение момента инерции маховика	27
1	4	Маятник Обербека	27
1	4	Определение коэффициента трения скольжения	27
1	4	Определение модуля Юнга	27
2	4	Физический маятник	27
2	4	Определение скорости звука в воздухе	27
3	4	Определение показателя адиабаты	27
3	4	Определение коэффициента вязкости методом Стокса	27
	32		

1	2	3	4
4	8	Исследование электростатического поля	28
4	3	Определение емкости конденсатора с помощью моста Сотти	4
5	4	Определение Э.Д.С. гальванического элемента методом компенсации	28

5	4	Электроизмерительные приборы	28
5	4	Определение электрических сопротивлений	28
6	9	Индуктивность катушки	28
	32		

4 семестр

1 CCMCC	_ L	·	
1	2	4	3
7	1	Оптическая скамья или Изучение работы микроскопа	29
7	1	Определение показателя преломления жидкости с помощью рефрактометра	29
7	1	Определение длины волны с помощью интерференции от двух щелей или Кольца Ньютона	29
7	1	Дифракционная решётка	29
7	1	Изучение поглощения света в жидкостях и твёрдых телах	29
7	2	Проверка закона Малюса	29
8	2	Определение постоянной Стефана-Больцмана с помощью пирометра	29
8	2	Проверка законов Столетова	29
10	2	Изучение зависимости электропроводности металлов и полупроводников от температуры	
10	3	Изучение работы фоторезистора	29
	16		

9. Задания для самостоятельной работы студентов

№ темы	Всего часов	Задания, вопросы, для самостоятельного изучения (задания)	Учебно- методическое обеспечение
1	2	3	4
1	15	Упругий и неупругий удары. Условия равновесия.	17-26
1	15	Гироскоп.	17-26
2	14	Сложение взаимно перпендикулярных колебаний	17-26
2	11	Стоячие волны. Акустические волны. Ультразвук и его применение.	17-26
3	25	Эффект Джоуля-Томсона. Сжижение газов.	17-26
4	10	Теорема Остроградского-Гаусса и ее применение к расчету полей.	17-26
4	13	Сегнетоэлектрики и пьезоэлектрики.	17-26
5	23	Электрический ток в газах. Ионизация и рекомбинация. Несамостоятельный и самостоятельный разряд. Плазма.	17-26
6	14	Циркуляция вектора напряженности магнитного поля, закон полного тока.	17-26
6	10	Ток смещения. Уравнение Максвелла. Электромагнитное поле.	17-26
6	10	Апериодический и периодический разряд конденсатора. Собственные колебания в колебательном контуре LRC. Вынужденные электрические колебания, резонанс.	17-26

		Электромагнитные волны. Вектор Умова-Пойтинга.	
		Школа электромагнитных волн.	
7	10	Пространственная решётка. Рассеяние света.	17-26
		Разрешающая способность оптических приборов.	
		Голография.	
8	7	Давление света по квантовой теории. Единство	17-26
		корпускулярных и волновых свойств света.	
8	8	Элементы квантовой механики.	17-26
		Волновые свойства частиц. Соотношения	
		неопределенностей Гейзенберга. Волновая функция	
		и её физический смысл.	
		Уравнение Шредингера. Частица в бесконечно	
		глубокой одномерной потенциальной яме.	
		Линейный гармонический осциллятор	
9	15	Правила смещения при радиоактивном распаде.	17-26
		Основной закон радиоактивного распада.	
		Радиоактивные семейства.	
	200		

10. Расчетно-графическая работа

Не предусмотрена учебным планом

11. Курсовая работа

Не предусмотрена учебным планом

12. Курсовой проект

Не предусмотрен учебным планом

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе освоения образовательной программы у студентов формируется компетенция УК-1:

$N_{\underline{0}}$	Название	Составляющие действия компетенции	Техно-	Средства и
ПП	компетенции		логии	технологии
			форми-	оценки
			рования	
1	2	3	4	5
1	УК-1.	Студент должен знать: основные	Лекции,	Бланковое
	способность	физические явления и основные законы	лаб.	тестирование
	осуществлять	физики; границы их применяемости,	занятия,	(письменный
	поиск,	применение законов в важнейших	CPC	опрос),
	критический	практических приложениях; основные		компьютерное
	анализ и	физические величины и физические		тестирование,
	синтез	константы, их определение, смысл,		демонстрация
	информации,	способы и единицы их измерения;		практических
	применять	фундаментальные физические опыты и		навыков
	системный	их роль в развитии науки; назначение и		
	подход для	принципы действия важнейших		
	решения	физических приборов.		
	поставленных	Студент должен уметь: объяснить		
	задач.	основные наблюдаемые природные и		
		техногенные явления и эффекты с		

позиций фундаментальных физических взаимодействий; указать, какие законы описывают данное явление или эффект; истолковывать смысл физических величин И понятий; записывать уравнения для физических величин в системе СИ; работать с приборами И оборудованием современной физической лаборатории; использовать различные методики физических измерений и обработки экспериментальных данных; использовать методы физического и математического моделирования, также применения методов физикоматематического анализа к решению конкретных естественнонаучных технических проблем. Студент должен владеть: навыками использования основных общефизических законов и принципов важнейших практических приложениях; навыками применения основных методов физикоматематического анализа для решения естественнонаучных задач; навыками эксплуатации правильной основных приборов и оборудования современной физической лаборатории; навыками обработки интерпретирования результатов эксперимента; навыками использования методов физического моделирования В инженерной практике.

УРОВНИ ОСВОЕНИЯ КОМПЕТЕНЦИИ УК-1

	Формулировка:		
	способность осуществлять поиск, критический анализ и		
УК-1	синтез информации, применять системный подход для		
	решения поставленных задач.		
Ступени уровней	Отличительные признаки		
освоения			
компетенций			
	2 семестр		
Пороговый (удовлетворительный)	Студент должен знать: основные физические явления и основные законы раздела физики «Механика», основные физические величины и физические константы, их смысл, единицы их измерения; фундаментальные физические опыты; назначение важнейших физических приборов. Студент должен уметь: объяснить основные природные явления		
	и эффекты с позиций фундаментальных физических		

взаимодействий; указать, какие законы механики описывают данное явление.

Студент должен владеть: навыками использования основных законов и принципов механики в практических приложениях

Продвинутый (хорошо)

Студент должен знать: основные физические явления и основные законы разделов физики «Механика», «Термодинамика». «Колебания и волны»; границы их применяемости, основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты; назначение важнейших физических приборов.

Студент должен уметь: объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие законы механики описывают данное явление или эффект; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории

Студент должен владеть: навыками использования основных законов и принципов механики в важнейших практических приложениях; навыками применения основных методов физикоматематического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории;

Высокий (отлично)

Студент должен знать: основные физические явления и основные законы раздела физиики «Механика»; границы их применяемости, применение законов в важнейших практических приложениях; основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов.

Студент должен уметь: объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие законы механики описывают данное явление или эффект; смысл физических величин истолковывать записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать различные методики физических измерений обработки экспериментальных использовать методы физического математического и моделирования, также применения методов физикоматематического конкретных анализа решению естественнонаучных и технических проблем.

Студент должен владеть: навыками использования основных законов механики и принципов в важнейших практических приложениях; навыками применения основных методов физикоматематического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории; навыками

	T 2 2
	обработки и интерпретирования результатов эксперимента;
	навыками использования методов физического моделирования в
	инженерной практике.
	3 семестр
Попотору г	Студент должен знать: основные физические явления и
Пороговый	основные законы раздела физики «Электричество и магнетизм»,
(удовлетворительный)	основные физические величины и физические константы, их
	смысл, единицы их измерения; фундаментальные физические
	опыты; назначение важнейших физических приборов.
	Студент должен уметь: объяснить основные природные явления
	и эффекты с позиций фундаментальных физических
	взаимодействий; указать, какие законы электричества и
	магнетизма описывают данное явление.
	Студент должен владеть: навыками использования основных
	законов и принципов электричества и магнетизма в практических
	приложениях
Продвинутый	Студент должен знать: основные физические явления и
(хорошо)	основные законы разделов физики «Электричество и магнетизм»,
(хорошо)	границы их применяемости, основные физические величины и
	физические константы, их определение, смысл, способы и
	единицы их измерения; фундаментальные физические опыты;
	назначение важнейших физических приборов.
	Студент должен уметь: объяснить основные наблюдаемые
	природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие
	законы электричества и магнетизма описывают данное явление
	или эффект; истолковывать смысл физических величин и
	понятий; записывать уравнения для физических величин в
	системе СИ; работать с приборами и оборудованием
	современной физической лаборатории
	Студент должен владеть: навыками использования основных
	законов электричества и магнетизма в важнейших практических
	приложениях; навыками применения основных методов физико-
	математического анализа для решения естественнонаучных задач;
	навыками правильной эксплуатации основных приборов и
	оборудования современной физической лаборатории;
	Студент должен знать: основные физические явления и основные
Высокий	законы раздела физики «Электричество и магнетизм»; границы
(отлично)	их применяемости, применение законов в важнейших
	практических приложениях; основные физические величины и
	физические константы, их определение, смысл, способы и
	единицы их измерения; фундаментальные физические опыты и
	их роль в развитии науки; назначение и принципы действия
	важнейших физических приборов.
	Студент должен уметь: объяснить основные наблюдаемые
	природные и техногенные явления и эффекты с позиций
	фундаментальных физических взаимодействий; указать, какие
	законы электричества и магнетизма описывают данное явление
	или эффект; истолковывать смысл физических величин и
	понятий; записывать уравнения для физических величин в
	системе СИ; работать с приборами и оборудованием

	современной физической лаборатории; использовать различные методики физических измерений и обработки экспериментальных данных; использовать методы физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем. Студент должен владеть: навыками использования основных законов электричества и магнетизма и принципов в важнейших практических приложениях; навыками применения основных методов физико-математического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории; навыками обработки и интерпретирования результатов эксперимента; навыками использования методов физического моделирования в инженерной практике.
	4 семестр
Пороговый (удовлетворительный)	Студент должен знать: основные физические явления и основные законы раздела физики «Оптика», основные физические величины и физические константы, их смысл, единицы их измерения; фундаментальные физические опыты; назначение
	важнейших физических приборов. Студент должен уметь: объяснить основные природные явления и эффекты с позиций фундаментальных физических
	взаимодействий; указать, какие законы оптики описывают данное явление.
	Студент должен владеть: навыками использования основных законов и принципов оптики в практических приложениях
Продвинутый (хорошо)	Студент должен знать: основные физические явления и основные законы разделов физики «Оптика», границы их применяемости, основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты; назначение важнейших физических приборов.
	Студент должен уметь: объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие
	законы оптики описывают данное явление или эффект; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории
	Студент должен владеть: навыками использования основных законов и принципов оптики в важнейших практических приложениях; навыками применения основных методов физико-
	математического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории;
Высокий (отлично)	Студент должен знать: основные физические явления и основные законы раздела физики «Оптика»; границы их применяемости, применение законов в важнейших практических приложениях; основные физические величины и физические константы, их

определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов.

Студент должен уметь: объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие законы оптики описывают данное явление или эффект; физических понятий: истолковывать смысл величин записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать различные методики физических измерений обработки экспериментальных данных; использовать физического математического методы И моделирования, применения методов физикоa также конкретных математического анализа решению К естественнонаучных и технических проблем.

Студент должен владеть: навыками использования основных законов оптики и принципов в важнейших практических приложениях; навыками применения основных методов физикоматематического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории; навыками обработки и интерпретирования результатов эксперимента; навыками использования методов физического моделирования в инженерной практике.

Текущий контроль знаний осуществляется в лабораторном практикуме при выполнении конкретного опыта. Прежде, чем приступить к выполнению опыта, студент должен решить 5-10 задач, которые случайным образом «выдаёт» компьютерная программа. Задачи соответствуют теме лабораторного задания. Преподаватель задаёт ещё несколько дополнительных вопросов по теории исследуемого процесса и выставляет окончательную оценку.

Контрольные вопросы имеются в каждом руководстве к конкретной лабораторной работе.

В комплект WEB-ресурса, расположенного по адресу: http://tfi.sstu.ru (локально разработка размещена в локальной сети по адресу: http://servertfi) входят следующие виды оценки знаний студентов

Примеры контрольных вопросов и заданий для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины, а также для контроля самостоятельной работы обучающегося по отдельным разделам дисциплины.

Семестр 2 Механика и молекулярная физика

- 1. Физпрактикум вопросы
- 2. Физпрактикум отчёт
 - 1. Момент инерции маховика
 - 2. Момент инерции маятника Обербека
 - 4. Сила трения

- 5. Определение модуля Юнга
- 6. Физический маятник
- 7. Определение скорости звука в воздухе
- 8. Определение показателя адиабаты
- 12. Метод Стокса

3. Модули

- 1 1 Механика
- 1.2 Механика
- 2.1 Молекулярная физика и термодинамика
- 2.2 Молекулярная физика и термодинамика

Семестр 3 Электричество и магнетизм

- 1. Физпрактикум вопросы
- 2. Физпрактикум отчёт
 - 2. Исследование электростатического поля
 - 4. Электроемкость
 - 5. Определение Э.Д.С. источника
 - 12. Электролиз
 - 14. Определение электрических сопротивлений
- 3. Модули
 - 3.1 Электричество
 - 3.2 Электричество
 - 4.1 Магнетизм
 - 4.2 Магнетизм

Семестр 4 Оптика, атомная и ядерная физика

- 1. Физпрактикум вопросы
- 2. Физпрактикум отчёт
 - 1. Оптическая скамья
 - 3. Рефрактометр
 - 5. Интерференция от двух щелей
 - 6. Кольца Ньютона
 - 7. Дифракционная решётка
 - 11. Фотоэффект
- 3. Модули
 - 5.1 Оптика
 - 5.2 Колебания и волны. Волновая оптика
 - 6.2 Квантовая оптика, атомная и ядерная физика

Вопросы к экзамену (семестр 2)

Физические основы механики

1. Системы отсчета. Способы задания движения. Равномерное и

- движение. Скорость и ускорение в данный момент времени.
- 2. Скорость и ускорение при криволинейном движении. Нормальное и тангенциальное ускорение. Вращательное движение точки.
- 3. Динамика материальной точки. Сила и масса. Законы Ньютона. Закон сохранения импульса. Реактивное движение.
- 4. Работа постоянной и переменной силы. Энергия. Кинетическая энергия. Потенциальное поле сил и потенциальная энергия.
- **5.** Динамика твердого тела. Поступательное и вращательное движение тела. Момент силы. Кинетическая энергия вращающегося тела. Момент инерции. Основной закон динамики вращательного движения.

Колебания и волны

- 6. Гармоническое колебательное движение и его основные характеристики. Векторная диаграмма. Собственные незатухающие и затухающие колебания. Маятники.
- 7. Волны в упругой среде. Продольные и поперечные волны. Уравнение бегущей волны (плоской и сферической).

Термодинамика и молекулярная физика

- 8. Энергия, переносимая волной. Интерференция волн. Стоячие волны. Акустические волны.
- 9. Основные положения молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории и следствие из него. Закон распределения молекул по скоростям Максвелла.
- 10. Барометрическая формула. Распределение Больцмана.
- 11. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Вандер-Ваальса.
- 12. Экспериментальные изотермы реального газа. Эффект Джоуля-Томсона. Сжижение газов.

Вопросы к зачёту (семестр 3) Электростатика

- 1. Закон Кулона.
- 2. Электрическое поле и его характеристики.
- 3. Работа сил электрического поля.
- 4. Графическое изображение электрического поля.
- 5. Поток вектора напряженности электрического поля.
- 6. Напряженность и потенциал поля точечного заряда.
- 7. Теорема Гаусса.
- 8. Закон Кулона, как следствие теоремы Гаусса.
- 9. Работа по перемещению заряда из одной точки в другую.
- 10. Вывод теоремы Гаусса из закона Кулона.
- 11. Какая физическая величина измеряется в электрон-вольтах.
- 12. Типы диэлектриков. Поляризация диэлектриков
- 13. Сегнетоэлектрики. Точка Кюри.
- 14. Электрическая ёмкость, определение, единицы измерения.
- 15. Последовательное и параллельное соединение конденсаторов.

Постоянный ток

- 16. Постоянный электрический ток. Закон Ома для участка цепи.
- 17. Работа и мощность постоянного электрического тока.
- 18. Последовательное и параллельное соединение резисторов.
- 19. Закон Ома для полной цепи.
- 20. Закон Джоуля Ленца.

21. Правила Кирхгофа.

Магнитное поле

- 22. Магнитное поле. Графическое изображение магнитного поля.
- 23. Магнитное поле и его характеристики.
- 24. Закон Био-Савара-Лапласа, его применение.
- 25. Магнитное поле прямого провода бесконечной длины.
- 26. Магнитное поле в центре кругового тока.
- 27. Взаимодействие параллельных токов. Закон Ампера.
- 28. Действие магнитного поля на движущийся заряд.
- 29. Сила Лоренца.
- 30. Движение заряженных частиц в магнитном поле.

Электромагнитная индукция

- 31. Явление электромагнитной индукции. Закон Фарадея.
- 32. Индуктивность контура.
- 33. Самоиндукция. ЭДС самоиндукции.
- 34. Токи при размыкании и замыкании цепи.
- 35. Взаимная индукция.
- 36. Трансформаторы.
- 37. Энергия магнитного поля.

Магнитные свойства вешества

- 38. Диа и парамагнетики.
- 39. Ферромагнетики. Петля Гистерезиса.

Электромагнитные колебания

- 40. Гармонические колебания и их характеристики.
- 41. Свободные гармонические колебания в колебательном контуре.
- 42. Дифференциальное уравнение свободных затухающих колебаний.
- 43. Переменный ток.
- 44. **R**, **L**, **C** в цепи переменного тока.
- 45. Мощность, выделяемая в цепи переменного тока.

• Электромагнитное поле

46. Уравнение Максвелла для электромагнитного поля.

Вопросы к зачёту (семестр 4)

Геометрическая оптика

- 1. Основные законы оптики. Полное внутреннее отражение.
- 2. Тонкие линзы. Изображение с помощью линз.
- 3. Формула линзы.
- 4. Лупа (увеличительное стекло).
- 5. Дальнозоркость и близорукость. Расстояние наилучшего зрения
- 6. Аберрация (погрешность оптических систем).
- 7. Энергетические и световые фотометрические величины.

Интерференция света

- 8. Корпускулярная и волновая теории света.
- 9. Принцип Гюйгенса основа волновой теории света.
- 10. Принцип Гюйгенса и законы преломления и отражения.
- 11. Интерференция света. Опыт Юнга.
- 12. Интерференция света в тонких плёнках (общие представления).
- 13. Кольца Ньютона.

- 14. Применение интерференции. Просветлённая оптика.
 - Дифракция света
- 15. Принцип Гюйгенса и интерференция
- 16. Дифракция Фраунгофера на одной щели Распределение интенсивности света.
- 17. Дифракционная решётка. Распределение интенсивности света.
- 18. Разрешающая способность. оптических приборов. Критерий Рэлея.
- 19. Разрешающая способность микроскопов и телескопов.
- 20. Разрешающая способность глаза.

Поляризация света

- 21. Естественный и поляризованный свет.
- 22. Получение поляризованных лучей.
- 23. Закон Малюса.
- 24. Вращение плоскости поляризации.
- 25. Двойное лучепреломление.
- 26. Поляризационные призмы (призма Николя) и поляроиды.

Дисперсия света

- 27. Зависимость показателя преломления от длины волны.
- 28. Радуга пример дисперсии.

Квантовая природа излучения.

- 29. Тепловое излучение и его характеристики.
- 30. Закон Кирхгофа.
- 31. Законы Стефана Больцмана и смещения Вина.
- 32. Формула Рэлея Джинса.
- 33. Квантовая гипотеза Планка. Формула Планка.
- 34. Тепловые источники света.
- 35. Внешний и внутренний фотоэффект.
- 36. Уравнение Эйнштейна для внешнего фотоэффекта.

Теория атома водорода по Бору

- 37. Модели атома Томсона и Резерфорда.
- 38. Линейчатый спектр атома водорода.
- 39. Спектральные серии Лаймана, Бальмера, Пашена атома водорода.
- 40. Постулаты Бора.
- 41. Спектр атома водорода по Бору.

14. Образовательные технологии

В лекционном изложении материала используется компьютерная программа для демонстрации различных явлений (в динамике). Все иллюстрации выводятся на большой экран, установленный в аудитории. Изменяя параметры явления (скорость, силу, массу, температуру, и т.д.) можно наблюдать особенности протекания процесса во времени и пространстве, влияние на него внешних параметров.

В состав ресурса входит программа визуальной интерактивной динамической иллюстрации физических понятий, процессов и явлений, применяемая при чтении курса лекций студентам различных технических специальностей вуза. Программа выполнена по открытой интернет — технологии. Она представляет собой набор двухфреймовых HTML-документов, содержащих страницы с включением интерактивных Flash — фильмов с динамическими физическими моделями и страницу с математическим аппаратом по изучаемому разделу. Управление динамическими моделями осуществляется на основе вычислений по приведенным физическим моделям.

В программе реализовано более 400 моделей по разделам «Механика и молекулярная физика», «Электричество и магнетизм», «Оптика, атомная и ядерная физика».

Для программной реализации применены классы программных кодов Action Script, позволяющие унифицировать дизайн страниц мультимедийной лекции, управление интерактивными элементами, постраничную навигацию, а также стандартизировать построение графиков математических функций и кривых Безье, имитацию работы с 3-D объектами внутри моделей.

В комплект ресурса входят также полные иллюстрированные конспекты лекций для преподавателей и рабочие тетради для студентов. Демонстрационная версия ресурса представлена в сети Интернет по адресу: http://tfi.sstu.ru, локально разработка размещена в локальной сети по адресу: http://servertfi.

15. Перечень учебно-методического обеспечения для обучающихся по лисшиплине

(рекомендуемые издания имеются в библиотечном фонде кафедры и рекомендованы на заседании кафедры ЕМН (протокол №1 от 01.09.2021 г.) к использованию в качестве дополнительной литературы)

- 1. Павлов, А. М. Курс общей физики. Механика / А. М. Павлов; под редакцией А. М. Павлова. Москва, Ижевск: Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 412 с. ISBN 978-5-4344-0717-5. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/91939.html. Режим доступа: для авторизир. пользователей
- 2. Перминов, А. В. Общая физика. Задачи с решениями : задачник / А. В. Перминов, Ю. А. Барков. Саратов : Вузовское образование, 2020. 725 с. ISBN 978-5-4487-0603-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/95156.html . Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/95156
- 3. Погожих, С. А. Физика. Сборник задач. Электромагнетизм, колебания и волны, оптика, квантовая и ядерная физика: учебное пособие / С. А. Погожих, С. А. Стрельцов. Новосибирск: НГТУ, 2020. 120 с. ISBN 978-5-7782-4163-3. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785778241633.html. Режим доступа: по подписке.
- 4. Физика Ч.1. Физические основы механики. Электричество. Электромагнетизм: учебнометодическое пособие / С. Н. Вальковский, А. П. Жилинский, И. Д. Самодурова, В. А. Оборотов; под редакцией В. А. Оборотова. Москва: Московский технический университет связи и информатики, 2018. 84 с. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/92470.html (дата обращения: 15.11.2021). Режим доступа: для авторизир. Пользователей
- 5. Физика. Ч.2. Колебания и волны. Элементы квантовой и статистической физики: учебнометодическое пособие / С. Н. Вальковский, А. П. Жилинский, В. А. Оборотов [и др.]; под редакцией В. А. Оборотова. Москва: Московский технический университет связи и информатики, 2018. 105 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/92471.html (дата обращения: 15.11.2021). Режим доступа: для авторизир. Пользователей

Дополнительная литература по физике

- 6. Трофимова Т.И. Основы физики. Механика: учебное пособие / Т.И. Трофимова. М.: КНОРУС, 2013. 224 с. ISBN 978-5-406-03158-2
- 7. Трофимова Т.И. Основы физики. Молекулярная физика. Термодинамика: учебное пособие / Т.И. Трофимова. М.: КНОРУС, 2013. 192 с. ISBN 978-5-406-03157-5

- 8. Трофимова Т.И. Основы физики. Электродинамика: учебное пособие / Т.И. Трофимова. М.: КНОРУС, 2013. 272 с. ISBN 978-5-406-03159-9
- 9. Трофимова Т.И. Основы физики. Волновая и квантовая оптика: учебное пособие / Т.И. Трофимова. М.: КНОРУС, 2013. 224 с. ISBN 978-5-406-03160-5
- 10. Сивухин Д.В. Общий курс физики. Учебное пособие: Для вузов. В 5 т. М.: ФИЗМАТЛИТ; Изд-во МФТИ, (Механика 2005, 560с.; Термодинамика и молекулярная физика 2005, 544 с.; Электричество 2004, 656 с.; Оптика 2005, 796 с.; Атомная и ядерная физика 2002, 784 с.).
- 11. Шубин А.С. Курс общей физики. Учебное пособие для инж.-эконом. специальностей вузов. Изд. 2-е М., «Высшая школа», 1976. 480с.
- 12. Лаврова И.В. Курс физики: Учеб. Пособие для студентов биол.-хим. Фак. пед. ин-тов. М.: Просвещение, 1981. 256c.
- 13. Стрелков С.П. Общий курс физики. МЕХАНИКА. Учебное пособие для университетов. Изд. 3-е, переработанное. М., 1975 г., 560 с.
- 14. Телеснин Р.В. Молекулярная физика. Изд. 2-е, доп. Учебное пособие для университетов. М.: «Высшая школа», 1973, 360с.
- 15. Калашников С.Г. Общий курс физики. ЭЛЕКТРИЧЕСТВО. Учебное пособие для студентов физических специальностей вузов. Изд. 4-е, переработанное и дополненное. М., 1977 г., 592с.
- 16. Калашников С.Г. Электричество: Учебное пособие. Изд. 6-е, стереотипное. М.: ФИЗМАТЛИТ, 2003. 624 с. ISBN 5-9221-0312-1
- 17. Джанколи Д. Физика: В 2-х т. Т.1.: Пер. с англ. М.: Мир, 1989. 656с. ISBN 5-03-00346-0
- 18. Джанколи Д. Физика: В 2-х т. Т.2.: Пер. с англ. М.: Мир, 1989. 667с. ISBN 5-03-00347-9
- 19. Фейнмановские лекции по физике: Задачи и упражнения с ответами и решениями. Под общ. ред. А.П Леванюка. М.: «Мир», 1969 г. 624с.
- 20. Бурсиан Э.В. ФИЗИКА. 100 задач для решения на компьютере. Учебное пособие. СПб.: ИД «МиМ», 1997. 256 с. ISBN 5-7562-0107-6
- 21. Мэтьюз Дж., Уокер Р. Математические методы ФИЗИКИ. Пер. с англ. М., Атомиздат, 1972. 392 с.
- 22. Иос Г. Курс теоретической физики. Механика и электродинамика. Пер. с 10-го немецкого изд. Под ред. проф. Б.М. Яворского. М, 1963 г. 579 с.
- 23. Медведев Б.В. Начала теоретической физики: Механика. Теория поля. Элементы квантовой механики. М.: Главная редакция физико-математической литературы издва «Наука», 1977 г. 496с.
- 24. Линднер Γ . Картины современной физики. Пер. с нем. Ю.Г. Рудого. Предисл. Н.В. Мицкевича. М.: Мир, 1977 г. 272 с.
- 25. Робертсон Б. Современная физика в прикладных науках: Пер. с англ. М.: Мир, 1985 г. 272 с.
- 26. Неезенъ Фр. Физика въ общедоступномъ изложеніи. Переводъ с немецкаго подъ **редакціей** и съ примечаніями Ф.Ф. Петрушевскаго. С.-ПЕТЕРБУРГЪ, Типографія Акц. Общ. Брокгаузъ-Ефронъ. 1903, 416 с.

Учебно -методическое обеспечение

- 27. Клинаев Ю.В., Корчагин С.А. Методические указания к лабораторным работам по физике. Часть 1. / Ю.В. Клинаев, С.А. Корчагин. Текст электронный URL: http://techn.sstu.ru/new/SubjectFGOS/InsertStatistika.aspx?IdResurs=36823&rashirenie=do
- 28. Клинаев Ю.В., Корчагин С.А. Методические указания к лабораторным работам по физике. Часть 2 / Ю.В. Клинаев, С.А. Корчагин. Текст электронный URL:

 $\frac{http://techn.sstu.ru/new/SubjectFGOS/InsertStatistika.aspx?IdResurs=36829\&rashirenie=do}{\underline{c}}$

29. Клинаев Ю.В., Корчагин С.А. Методические указания к лабораторным работам по физике. Часть 3 / Ю.В. Клинаев, С.А. Корчагин. — Текст электронный — URL: http://techn.sstu.ru/new/SubjectFGOS/InsertStatistika.aspx?IdResurs=36830&rashirenie=doc

Программное обеспечение и Интернет-ресурсы

Разработана программа и выложена в интернете для более глубокого изучения материала, представленного в лекционном изложении (http://tfi.sstu.ru).

- 1. Пат. 2009612725 Российская Федерация , МПК . Мультимедийное сопровождение курса лекций по дисциплине "Физика" раздел "Электричество и магнетизм": Свидетельство о государственной регистрации программы для ЭВМ /Ставский Ю.В. ; заявитель ; патентообладатель Саратовский государственный технический университет .-№ 2009611384.
- 2. Пат. 2009612722 Российская Федерация , МПК . Мультимедийное сопровождение курса лекций по дисциплине "Физика" раздел "Механика и молекулярная физика": Свидетельство о государственной регистрации программы для ЭВМ /Ставский Ю.В. ; заявитель ; патентообладатель Саратовский государственный технический университет .-№ 2009611381 .
- 3. Пат. 2009612724 Российская Федерация, МПК . Мультимедийное сопровождение курса лекций по дисциплине "Физика" раздел "Оптика, атомная и ядерная физика": Свидетельство о государственной регистрации программы для ЭВМ /Ставский Ю.В. ; заявитель ; патентообладатель Саратовский государственный технический университет .-№ 2009611383.

16. Материально-техническое обеспечение

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, укомплектованная специализированной мебелью и техническими средствами обучения: 20 столов, 40 стульев; рабочее место преподавателя; маркерная доска; проектор BENQ 631, стационарный проекционный экран, системный блок (Atom2550/4Гб/500, клавиатура, мышь) подключенный в сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебнонаглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе лисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Лабораторные работы проводятся в следующих лабораториях:

1. Учебная лаборатория «Механика и молекулярная физика».

Укомплектована специализированной мебелью и техническими средствами обучения: 6 столов, 12 стульев; рабочее место преподавателя; меловая доска, физический маятник; установками для определения момента инерции маховика; момента инерции маятника Обербека; коэффициента трения скольжения; скорости звука; динамической вязкости жидкостей (метод Стокса); показателя адиабаты

2. Учебная лаборатория физического практикума «Электричество и магнетизм».

Укомплектована специализированной мебелью и техническими средствами обучения: 10 столов, 20 стульев; рабочее место преподавателя; меловая доска; установками для изучения диэлектрических свойств титаната бария; измерения электрических сопротивлений резисторов; электроемкости конденсаторов мостом Сотти; электростатического поля; электроизмерительные приборы; определение числа Фарадея и заряда электрона

3. Учебная лаборатория «Оптика. Физика твердого тела».

Укомплектована специализированной мебелью и техническими средствами обучения: 10 столов, 20 стульев; рабочее место преподавателя; меловая доска; установками: оптическая скамья; интерференция света; изучение поглощения света в жидкостях и твердых телах; проверка законов абсолютно черного тела; изучение внешнего фотоэффекта

Для проведения текущего контроля и промежуточной аттестации, самостоятельной работы студентов используется аудитория, укомплектованная специализированной мебелью и техническими средствами обучения: 10 столов, 10 стульев; рабочее место преподавателя; 10 компьютеров (Intel P4 /512 Мб/40 Гб), мониторы 17' Samsung, клавиатура, мышь) подключенных в сеть с выходом в Интернет и доступом в информационнообразовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows XP, Microsoft Office XP (Word, ПО для обработки результатов и тестирования по физике), GoogleChrome.

Рабочую программу составил	-
д.фм.н., профессор	<

ch Th	
JO. Kenner	/Ю.В. Клинаев/

•	17.	Дополнения и	изменения	в рабочей	программе
	_ , .	Actioning in	11311101101111111	D page ici	porpa

	 Рабочая программа пересмотр «» 20 год 		кафедры
		_	•
	 Зав. кафедрой 		/
•	Внесенные изменения утверждены на	а заседании УМК	С/УМКН
	• «	года, протокол	л №
	 Председатель УМКС/УМКН 	/	/