Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Оборудование и технологии обработки материалов»

РАБОЧАЯ ПРОГРАММА

по дисциплине

Б.1.2.3 «Основы инновационного машиностроительного производства» направления подготовки 15.03.05 «Конструкторско-технологическое обеспечение

машиностроительных производств» Профиль «Технология машиностроения»

форма обучения – заочная курс - 2семестр – 3 зачетных единиц – 2 всего часов – 72 в том числе: лекции – 6 коллоквиумы – не предусмотрены практические занятия – 4 лабораторные занятия – не предусмотрены самостоятельная работа – 62 зачет – 3 семестр экзамен – не предусмотрен РГР – не предусмотрена курсовая работа – не предусмотрена курсовой проект – не предусмотрен контрольная работа – 3 семестр

> > Энгельс 2022

1. Цели и задачи дисциплины

Учебная дисциплина «Основы инновационного машиностроительного реализует требования федерального производства» государственного образовательного стандарта образования высшего направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств».

преподавания дисциплины «Основы инновационного машиностроительного производства» является формирование у студента компетенций необходимых для успешной профессиональной деятельности в проектно-конструкторской, производственно-технологической сервисно-эксплуатационной деятельности бакалавра на таких объектах, как машиностроительные производства, их основное и =вспомогательное оборудование, комплексы, инструментальная техника, технологическая проектирования, оснастка, средства механизации автоматизации управления.

Для достижения этой цели преподавание дисциплины предполагает:

- ознакомить с историей становления и развития специальности;
- ознакомить с содержанием образовательного стандарта;
- раскрыть сферу профессиональной деятельности.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Основы инновационного машиностроительного производства» представляет собой дисциплину вариативной части профессионального цикла (Б.1.2) основной образовательной программы бакалавриата по направлению (15.03.05) «Конструкторско-технологическое обеспечение машиностроительных производств».

Для освоения дисциплины «Основы инновационного машиностроительного производства» студент должен иметь представление о выбранной профессии и специальности.

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование следующих компетенций:

- способность участвовать в разработке обобщенных вариантов решения проблем, связанных с машиностроительными производствами, выборе оптимальных вариантов прогнозируемых последствий решения на основе их анализа (ОПК-4);
- способность к пополнению знаний за счет научно-технической информации отечественного и зарубежного опыта по направлению

исследования в области разработки, эксплуатации, автоматизации и реорганизации машиностроительных производств (ПК-10);

- способность выполнять работы по составлению научных отчетов, внедрению результатов исследований и разработок в практику машиностроительных производств (ПК-14);

Студент должен знать: основные тенденции развития в машиностроительной отрасли; возможные перспективы профессиональной карьеры.

Студент должен уметь: грамотно распределять свое время и другие ресурсы, обеспечивать рациональную технологию труда в вузе; получать и эффективно использовать информацию.

Студент должен владеть: терминологическим аппаратом в области технологических процессов и производств; навыками теоретического подхода к процессам резания и быстрого решения поставленных задач в данной области.

4. РАСПРЕДЕЛЕНИЕ ТРУДОЕМКОСТИ (ЧАС.) ДИСЦИПЛИНЫ ПО ТЕМАМ И ВИДАМ ЗАНЯТИЙ

№ Мо- ду- ля	№ Не де ли	№ Те мы	Наименование темы	Часы					
				Всего	Лек- ции	Коллок- виумы	Лабора- торные	Прак- тичес- кие	СРС
	3 семестр								
	1	1	Введение Содержание курса						
			Раздел 1.						
	3	2	Машиностроительное производство, основные понятия и определения	2	2				
	5	3	Влияние различных факторов на величину силы резания						
1	7	4	Основы теории резания металлов	17				1	16
			Раздел 2.						
	9	5	Инструментальные материалы	2	2				
	11	6	Точность в машиностроении и методы её достижения	20					20

2	13	7	Шероховатость поверхности	2			2	
			Раздел 3.					
	15	8	Базирование и базы в машиностроении	3	2		1	
	17	9	Последовательность проектирования технологических процессов	26				26
Всего	Всего		72	6		4	62	

5. Содержание лекционного курса

№	Всего	№	Тема лекции. Вопросы, отрабатываемые на лекции	Учебно-
те	часов	лек		методическое
МЫ		ции		обеспечение
1	2	1	Машиностроительное производство, основные понятия и определения. Технология машиностроения. Изделие в машиностроении. Деталь. Сборочная единица. Производственный процесс.	
2	2	2	Инструментальные материалы. Основные требования к инструментальным материалам следующие.	[1-3, 7, 8]
3	2	3	Базирование и базы в машиностроении. Установление конструкторских и технологических баз. Погрешности базирования и закрепления заготовок.	

6. Коллоквиумы

Коллоквиумы учебным планом не предусмотрены

7. Перечень практических занятий

№ темы	Всего часов	№ занятия	Тема практического занятия. Задания, вопросы, отрабатываемые на практическом занятии	Учебно- методическое обеспечение
1	1	1	Изучение конструкции токарных резцов.	
2	2	1	Изучение конструкции инструментов для обработки отверстий.	[2, 4, 9]
3	2	2	Изучение конструкции фрез.	

Отчет должен содержать тему, краткую теоретическую и развернутую практическую части, с подробными комментариями ко всем этапам моделирования, объем не менее 4 страниц.

8. Перечень лабораторных работ

Лабораторные работы учебным планом не предусмотрены

9. Задания для самостоятельной работы студентов

Текущая самостоятельная работа студентов (СРС) по дисциплине «Основы инновационного машиностроительного производства», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя следующие виды работ:

- работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по темам, вынесенным на самостоятельную проработку;
- подготовка к практическим занятиям и зачету.

_

№	Всего	Задания, вопросы, для	Учебно-методическое обеспечение
темы	часов	самостоятельного изучения	
		(задания)	
2	16	Правила оформления	
		технологических	[11, 1-3, 12-15]
		процессов.	
3	20	Смазочно-охлаждающие	[10 1 2 12 15]
		жидкости	[10, 1-3, 12-15]
4	26	Технологическая оснастка	[2, 4, 5, 12 - 15]

10. Расчетно-графическая работа

Расчетно-графическая работа учебным планом не предусмотрена.

11. Курсовая работа

Курсовая работа учебным планом не предусмотрена.

12. Курсовой проект

Курсовой проект учебным планом не предусмотрен.

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины «Основы инновационного машиностроительного производства» должны быть сформированы общепрофессиональная и профессиональные компетенции ОПК-4, ПК-10,14

Уровни освоения компетенции

Индекс		Формулир	овка:	
ОПК-4	способность участвова	ать в разраб	отке обобщенных	вариантов
	решения проблем,	связанных	с машиностро	оительными
	производствами,	выборе	оптимальных	вариантов
	прогнозируемых последствий решения на основе их анализа			

Ступени уровней	Отличительные признаки	Технологии	Средства и
освоения компетенции		формирования	технологии оценки
Пороговый	Способен осуществлять	Лекции,	Практические
(удовлетворительный)	детализацию целей и	практические	работы выполнены
	формулировать задачи	занятия	с небольшими
	работы с массивами		замечаниями,
	информации в сфере своей		имелись
	профессиональной		затруднения при
	специализации и смежных		ответе на
	с ней областях		дополнительные
	естественнонаучных		вопросы;
	знаний. Способен		не менее 60%
	формулировать		правильных
	обоснованные выводы из		ответов при
	проанализированной		выполнении
	информации,		тестовых заданий;
	устанавливать характер		не вполне
	количественных и		законченные
	качественных		выводы в ответе на
	закономерностей,		вопросы на зачете
	взаимосвязей согласно		1
	целям работы с		
	информацией. Способен		
	сформулировать, и в		
	координации с другими		
	специалистами		
	реализовать на практике		
	решения, направленные на		
	достижения поставленных		
	целей. Способен		
	самостоятельно		
	расширять набор знаний,		
	умений и навыков,		
	необходимых для		
	успешного решения		
	проблем		
	профессиональной		
	деятельности.		
Продвинутый	Способен выбирать и		Практические
(хорошо)	формулировать цели для		работы выполнены
	работы с общенаучной и		с небольшими
	специализированной		замечаниями,
	отраслевой информацией		имелись небольшие
	в соответствии со средне-		неточности при
	и долгосрочной		ответе на

стратегией деятельности и дополнительные развития масштабе вопросы; группы специалистов менее 75% (небольшого предприятия, правильных структурного ответов при подразделения крупной выполнении организации) при тестовых заданий; как непосредственном имеются негрубые взаимодействии, так и с ошибки или использованием неточности при современных средств ответе на вопросы коммуникации. Способен на зачете направление определять развития структуры компетенций (как рамках самообразования, так и в групповой работе), необходимое успешной реализации на практике целей, стоящих перед подразделением, предприятием, коллективом. Высокий Способен распознавать Практические (отлично) действующие тенденции в работы выполнены без области своей замечаний, профессионально студент свободно деятельности, понимать отвечает потенциальные дополнительные возможности влияния на вопросы; 90% них открытий разработок не менее достижений В правильных естественнонаучных И ответов при гуманитарных областях выполнении знания. Способен тестовых заданий; реализовывать на студент умеет практике управление оперировать целями и стратегиями их специальными лостижения учетом терминами, действующих тенденций в использует в ответе разных масштабах. дополнительный (группа специалистов, материал, межгрупповое иллюстрирует взаимодействие и т.д.). теоретические Способен прогнозировать положения состав структуру практическими компетенций, примерами системы критически важных для при ответе на достижения ключевых вопросы на зачете целей профессиональной

деятельности в масштабе

предприятия или	
кооперированной	
структуры с учетом	
действующих тенденций.	
Способен активно и	
результативно	
участвовать в реализации	
процесса формирования	
такой системы	
компетенций и	
обеспечении ее	
устойчивой динамики.	

Индекс	Формулировка:					
ПК-10	способность к пополнению знаний за счет научно-техническо					
	информации отечественного и зарубежного опыта по					
	направлению исследования в области разработки, эксплуатации,					
	автоматизации и реорганизации машиностроительных					
	производств					

Ступени	Отличительные признаки	Технологии	Средства и
уровней		формирования	технологии оценки
освоения			
компетенции			
Пороговый	Знает:	Лекции,	Практические работы
(удовлетв.)	- способы сбора научно-	практические	выполнены с
	технической информации	занятия	небольшими
	отечественного и зарубежного		замечаниями, имелись
	опыта по направлению		затруднения при
	исследования		ответе на
	- способы анализа качества		дополнительные
	продукции, организацию		вопросы;
	контроля качества, управления		не менее 60%
	и автоматизации		правильных ответов
	технологическими процессами		при выполнении
	Умеет:		тестовых заданий;
	- анализировать источники		не вполне
	информации отечественного и		законченные выводы
	зарубежного опыта по		в ответе на вопросы
	направлению исследования в		на экзамене
	области разработки		
	технологических процессов,		
	технологической оснастки,		
	режущего инструмента		
	автоматизации и		
	реорганизации		
	машиностроительных		
	производств;		
	Владеет:		
	- навыками исследования		
	отечественного и зарубежного		

	1	
	опыта оформления результатов	
	исследований и принятия	
	соответствующих решений.	
	- инновационными	
	творческими подходами к	
	решению, как традиционных	
	технологических задач, так и	
	решению задач, методами	
	анализа и систематизации	
	информации.	
Продрициятий	Знает:	Практические работы
Продвинутый		
(хорошо)	- способы сбора научно-	выполнены с
	технической информации	небольшими
	отечественного и зарубежного	замечаниями, имелись
	опыта по направлению	небольшие
	исследования	неточности при ответе
	- способы анализа качества	на дополнительные
	продукции, организацию	вопросы;
	контроля качества, управления	не менее 75%
	и автоматизации	правильных ответов
	технологическими процессами	при выполнении
	Умеет:	тестовых заданий;
	- анализировать источники	имеются негрубые
	информации отечественного и	
	1 * *	
	зарубежного опыта по	неточности при ответе
	направлению исследования в	на вопросы экзамене
	области разработки	
	технологических процессов,	
	технологической оснастки,	
	режущего инструмента	
	автоматизации и	
	реорганизации	
	машиностроительных	
	производств;	
	Владеет:	
	- навыками исследования	
	отечественного и зарубежного	
	опыта оформления результатов	
	исследований и принятия	
	соответствующих решений.	
	1	
	- инновационными	
	творческими подходами к	
	решению, как традиционных	
	технологических задач, так и	
	решению задач, методами	
	анализа и систематизации	
	информации.	
Высокий	Знает:	Практические работы
(отлично)	- способы сбора научно-	выполнены без
	технической информации	замечаний, студент
	отечественного и зарубежного	свободно отвечает на
	are recreament in supycemment	oboodiio oibe idei iid

опыта по направлению	дополнительные
исследования	вопросы;
- способы анализа качества	не менее 90%
	правильных ответов
	•
контроля качества, управления	при выполнении
и автоматизации	тестовых заданий;
технологическими процессами Умеет:	студент умеет
	оперировать
- анализировать источники	специальными
информации отечественного и	терминами,
зарубежного опыта по	использует в ответе
направлению исследования в	дополнительный
области разработки	материал,
технологических процессов,	иллюстрирует
технологической оснастки,	теоретические
режущего инструмента	положения
автоматизации и	практическими
реорганизации	примерами
машиностроительных	при ответе на вопросы
производств;	на экзамене
Владеет:	
- навыками исследования	
отечественного и зарубежного	
опыта оформления результатов	
исследований и принятия	
соответствующих решений.	
- инновационными	
творческими подходами к	
решению, как традиционных	
технологических задач, так и	
решению задач, методами	
анализа и систематизации	
информации.	
I - L	

Индекс способностью выполнять работы по составлению научных отчетов, внедрению результатов исследований и разработок в практику машиностроительных производств

Ступени уровней	Отличительные признаки	Технологии	Средства и	
освоения		формирования	технологии	
компетенции			оценки	
1	2			
Пороговый	Способен решать типовые	Лекции,	Практические	
(удовлетворительный)	задачи предметной области,	практические	работы	
	в т. ч. требующие	занятия	выполнены с	
	практического знания,		небольшими замечаниями,	
	способами, описанными в			
	учебных, справочных и		имелись	
	нормативных		затруднения при	
	информационных		ответе на	

	источниках.		дополнительные	
	Способен использовать		вопросы;	
	в работе методики		не менее 60%	
	информационного поиска в		правильных	
	письменных и электронных		ответов при	
	источниках информации, а		выполнении	
	также планировать,		тестовых заданий; не вполне законченные	
	проводить и			
	интерпретировать			
	результаты экспериментов			
	(в т.ч. с применением		выводы в ответе	
	средств моделирования) с		на вопросы на	
	объектами предметной		экзамене	
	области			
Продвинутый	Способен решать	Лекции,	Практические	
(хорошо)	широкий круг задач	практические	работы	
(Aopome)	предметной области, в т.ч.	занятия	выполнены с	
	имеющие множество	Запитни	небольшими	
	ограничений, используя как		замечаниями,	
	типовые подходы, так и		имелись	
	·		небольшие	
	подходы, выходящие за			
	рамки стандартов.		неточности при	
	Способен		ответе на	
	формулировать допущения		дополнительные	
	и ограничения на модели		вопросы;	
	объектов предметной		не менее 75%	
	области, применяемые в		правильных	
	исследованиях их состояния		ответов при	
	и динамики. В целом		выполнении	
	понимает методику		тестовых	
	обоснования выбора		заданий;	
	оптимального решения		имеются	
	проблемы при наличии		негрубые	
	альтернатив.		ошибки или	
	_		неточности при	
			ответе на	
			вопросы на	
			экзамене	
Высокий	Уверенно ориентируется во	Лекции,	Практические	
(отлично)	всем спектре задач	практические	работы	
,	предметной области.	занятия	выполнены без	
	Демонстрирует способность		замечаний,	
	к анализу причин		студент	
	отклонений от целевых		свободно	
	показателей процессов,		отвечает на	
	реализуемых на практике, а		дополнительные	
	1			
	также прогнозированию		вопросы;	
	последствий принимаемых		не менее 90%	
	решений с учетом		правильных	
	действующей системы		ответов при	
	ограничений в конкретной		выполнении	

предметной области.	тестовых
Хорошо знаком со	заданий;
1	
спектром научных проблем	студент умеет
предметной области.	оперировать
Способен корректно	специальными
интерпретировать	терминами,
результаты научных	использует в
исследований в своей и	ответе
смежных предметных	дополнительный
областях, выстраивать	материал,
алгоритмы внедрения	иллюстрирует
научных результатов в	теоретические
реализуемые на практике	положения
процессы. Способен	практическими
участвовать в	примерами
формулировании проблем и	при ответе на
задач, для решения которых	вопросы на
необходимо задействовать	экзамене
аппарат научных	
исследований.	

Практические работы считаются успешно выполненными в случае предоставления в конце занятий, отведенных на выполнение этой работы, отчета, включающего тему, ход работы, соответствующие рисунки и подписи (при наличии), и ответе на вопросы (защите) по теме работы. Шкала оценивания — «зачтено» / «не зачтено». «Зачтено» за практическую работу ставится в случае, если она полностью и правильно выполнена, и при этом обучающимся показано свободное владение материалом по дисциплине. «Не зачтено» ставится в случае, если практическая работа выполнена неверно и/или не полностью, и она возвращается студенту на доработку, а затем вновь сдаётся на проверку преподавателю.

В конце семестра обучающийся письменно отвечает на тестовые задания, содержащие вопросы по изученному материалу. Оценивание тестовых заданий проводится по принципу «зачтено» / «не зачтено». В качестве критериев оценивания используется количество правильных ответов. При ответе более чем, на 60 % вопросов выставляется «зачтено», в случае меньшего количества правильных ответов ставится «не зачтено».

К зачету по дисциплине обучающиеся допускаются при:

- предоставлении и защите отчетов по всем практическим занятиям;
- успешном написании тестовых заданий.

Зачет сдается устно, по билетам, в которых представлено 2 вопроса из перечня «Вопросы для зачета». Оценивание проводится по принципу «зачтено» / «не зачтено».

«Зачтено» ставится при правильном, полном и логично построенном ответе, умении оперировать специальными терминами, использовании в ответе дополнительного материала, иллюстрировании теоретического

положения практическим материалом. Но в ответе могут иметься негрубые ошибки или неточности, затруднения в использовании практического материала, не вполне законченные выводы или обобщения.

«Не зачтено» ставится при схематичном неполном ответе, неумении оперировать специальными терминами или их незнании.

Вопросы для зачета

1.	Машиностроительное производство, основные			
понятия и определения.				
2.	Структурная схема технологического процесса			
механической обработк	И			
3.	Правила оформления МК, ОК, КТП, КЭ			
4.	Наименование и обозначение стандартного			
инструмента при заполнении технологических форм.				
5.	Влияние различных факторов на величину силы			
резания.				
6.	Зависимость силы резания от ширины и толщины			
срезаемого слоя.				
7.	Зависимость сил резания от свойств			
обрабатываемого метал.	па.			
8.	Влияние свойств инструментального материала на			
силу резания.				
9.	Влияние скорости резания на силу резания.			
10.	Основы теории резания металлов.			
11.	Элементы режима резания.			
12.	Выбор режущего инструмента.			
13.	Выбор и назначение глубины резания.			
14.	Выбор величины подачи.			
15.	Выбор значения периода стойкости.			
16.	Основные требования к инструментальным			
материалам.				
17.	Точность в машиностроении.			
18.	Отклонения формы и расположения поверхностей.			
19.	Факторы, определяющие точность обработки.			
20.	Точность настройки станка и режущего			
инструмента.				
21.	Жёсткость технологической системы.			
22.	Влияние на точность обработки температуры и			
других факторов.				
23.	Шероховатость поверхности. Параметры			
шероховатости.				
24.	Механизм возникновения шероховатости.			

25. Методы и средства оценки шероховатости поверхности. Профилограф.

26. Установление конструкторских и технологических баз.

- 27. Погрешности базирования и закрепления заготовок.
- 28. Последовательность проектирования технологических процессов.
- 29. Исходные данные для проектирования технологического процесса механической обработки. Их анализ.
- 30. Анализ рабочего чертежа детали и технических условий на её изготовление.
 - 31. Конструктивно-технологический анализ детали.
 - 32. Анализ условий производства.
 - 33. Определение типа производства.
 - 34. Проектирование технологического маршрута.

Общие требования.

- 35. Нормирование технологических процессов.
- 36. Виды станочных приспособлений.
- 37. Частные случаи расчёта сил зажима станочных приспособлений.

Вопросы для экзамена

Экзамен не предусмотрен учебным планом.

Задания по дисциплине

Индивидуальные задания для промежуточной аттестации (пример).

№1

Наука, изучающая и устанавливающая закономерности протекания процессов обработки и параметры, воздействие на которые наиболее эффективно сказывается на интенсификации процессов обработки и повышении их точности это—

- 1) технология машиностроения;
- 2) теория резания;
- 3) конструирование.

№2

Изделием в машиностроении называется-

- 1) деталь;
- 2) любой предмет производства, подлежащий изготовлению на предприятии;
- 3) сборочная единица.

<u>№</u>3

Составная часть изделия, изготовленная из однородного материала без применения сборочных операций это—

- 1) Сборочная единица;
- 2) Изделие;
- 3) Деталь.

No4

Изделие, соединённое из составных частей, собранных обособленно от остальных элементов изделия это—

- 1) Сборочная единица;
- 2) Изделие;
- 3) Деталь.

No5

совокупность взаимосвязанных действий, в результате которых исходные материалы и полуфабрикаты превращаются в готовые изделия это—

- 1) Сборочная операция;
- 2) Производственный процесс;
- 3) Конструирование.

№6

- 12. Какое выражение верно для массового производства:
- 1) изделия изготавливают непрерывно, в больших количествах и в течение продолжительного времени (до нескольких лет);
- 2) партии (серии) изделий, регулярно повторяющиеся через определённые промежутки времени;
- 3) изделия изготавливают в малых количествах и, зачастую, индивидуально.

№7

- 13. Какое выражение верно для серийного производства:
- 1) изделия изготавливают непрерывно, в больших количествах и в течение продолжительного времени (до нескольких лет);
- 2) партии (серии) изделий, регулярно повторяющиеся через определённые промежутки времени;
- 3) изделия изготавливают в малых количествах и, зачастую, индивидуально.

- 14. Какое выражение верно для единичного производства:
- 1) изделия изготавливают непрерывно, в больших количествах и в течение продолжительного времени (до нескольких лет);

- 2) партии (серии) изделий, регулярно повторяющиеся через определённые промежутки времени;
- 3) изделия изготавливают в малых количествах и, зачастую, индивидуально.

<u>№</u>9

- 15.Отношение числа всех технологических операций, выполненных или подлежащих выполнению, к числу рабочих мест называется:
- 1) тактом выпуска;
- 2) коэффициентом закрепления операций;
- 3) технологическим временем.

№10

- 16.Интервал времени, через который периодически производится выпуск изделий называется:
- 1) тактом производства;
- 2) коэффициентом закрепления операций;
- 3) технологическим временем.

№11

- 17. Годовое количество выпускаемых изделий выраженное в трудоёмкости называется:
- 1) тактом производства;
- 2) коэффициентом закрепления операций;
- 3) производственной программой завода.

№12

- 18. Часть производственного процесса, содержащую действия по изменению состояния предмета производства называется:
- 1) тактом производства;
- 2) технологическим процессом;
- 3) производственной программой завода.

№13

- 19.В технологических процессах механической обработки заготовок:
- 1) происходит последовательное изменение состояния предмета труда от исходной заготовки до получения готовой детали;
- 2) происходят структурные превращения, изменяющие механические свойства материала заготовки;
- 3) производится образование разъёмных и неразъёмных соединений составных частей изделия.

No 14

20.В технологических процессах термообработки:

- 1) происходит последовательное изменение состояния предмета труда от исходной заготовки до получения готовой детали;
- 2) происходят структурные превращения, изменяющие механические свойства материала заготовки;
- 3) производится образование разъёмных и неразъёмных соединений составных частей изделия.

- 21.В технологических процессах термообработки:
- 1) происходит последовательное изменение состояния предмета труда от исходной заготовки до получения готовой детали;
- 2) происходят структурные превращения, изменяющие механические свойства материала заготовки;
- 3) производится образование разъёмных и неразъёмных соединений составных частей изделия.

№16

- 22. законченную часть технологического процесса, выполняемую на одном рабочем месте называют:
- 1) установ;
- 2) технологической операцией;
- 3) переходом.

№17

- 23. часть операции, выполняемая при неизменном закреплении заготовок называют:
- установ;
- 2) технологической операцией;
- 3) переходом.

No18

- 24. законченная часть операции, не сопровождаемая обработкой, но необходимая для выполнения данной операции (установка и снятие заготовки, инструмента, контрольный промер) называется:
- 1) вспомогательным переходом;
- 2) технологической операцией;
- 3) переходом.

No19

25. законченная часть перехода, состоящая из однократного перемещения режущего инструмента относительно заготовки и сопровождаемая изменением формы, размеров и шероховатости поверхности или свойств заготовки называется:

- 1) вспомогательным переходом;
- 2) технологической операцией;
- 3) рабочим ходом.

- 26. законченная часть перехода, состоящая из однократного перемещения режущего инструмента относительно заготовки не сопровождаемая изменением формы, размеров и шероховатости поверхности или свойств заготовки, но необходимая для выполнения рабочего хода называется:
- 1) вспомогательным ходом;
- 2) технологической операцией;
- 3) рабочим ходом.

№21

- 27.В какой карте описание технологического процесса изготовления или ремонта изделия с расчленением ТПр по всем операциям в их технологической последовательности, с указанием данных по оборудованию, оснастке, материальным, трудовым и другим нормативам:
- 1) в маршрутной;
- 2) в операционной;
- 3) в карте эскизов.

№22

- 28.В какой карте приводится описание операции технологического процесса изготовления или ремонта изделия с расчленением её по переходам с указанием режимов обработки, режущего инструмента, технологической оснастки, расчётных норм времени и трудовых нормативов:
- 1) в маршрутной;
- 2) в операционной;
- 3) в карте эскизов.

No23

- 29. Какая карта содержит графическую иллюстрацию технологического процесса изготовления изделия или его отдельных узлов:
- 1) маршрутная;
- 2) операционная;
- 3) карта эскизов.

№24

30. Какая карта содержит описание технологического процесса изготовления или ремонта изделия, по всем операциям

выполняемым в одном цехе в технологической последовательности с указанием режимов обработки, расчётных норм времени, данных по оборудованию, оснастке, материальным, трудовым и другим нормативам:

- 1) маршрутная;
- 2) операционная;
- 3) карта технологического процесса.

No25

- 31.Сила действующая в плоскости резания в направлении главного движения (по оси Z) называется:
- 1) вертикальной составляющей силы резания;
- 2) радиальной составляющий силы резания;
- 3) осевая составляющая силы резания.

№26

- 32.Сила, действующая в плоскости хоу перпендикулярно к оси заготовки при точении, называется:
- 1) вертикальной составляющей силы резания;
- 2) радиальной составляющий силы резания;
- 3) осевая составляющая силы резания.

№27

- 33.Сила, действующая в плоскости хоу вдоль оси заготовки при точении, называется:
- 1) вертикальной составляющей силы резания;
- 2) радиальной составляющий силы резания;
- 3) осевая составляющая силы резания.

№28

- 34.совокупность элементов, определяющих условия протекания процесса резания называется:
- 1) технологической операцией;
- 2) рабочим ходом;
- 3) режимом резания.

№29

- 35.расстояние между обрабатываемой и обработанной поверхностями, измеренное по нормали к последней называется:
- 1) глубиной резания;
- 2) рабочим ходом;
- 3) режимом резания.

- 36. отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой уменьшается от края к середине называется:
- 1) выпуклостью;
- 2) вогнутостью;
- 3) овальностью.

- 37. отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой увеличивается от края к середине называется:
- 1) выпуклостью;
- 2) вогнутостью;
- 3) овальностью.

№32

- 38. отклонение OT круглости при котором реальный профиль собой овалообразную наибольший фигуру, представляет которой наименьший диаметры находятся во взаимно перпендикулярных направлениях называется:
- 1) выпуклостью;
- 2) огранкой;
- 3) овальностью.

№33

- 39.отклонение от круглости при котором реальный профиль представляет собой многогранную фигуру называется:
- 1) выпуклостью;
- 2) огранкой;
- 3) овальностью.

Nº34

- 40. отклонение профиля, при котором образующие прямолинейны, но не параллельны называется:
- 1) бочкообразностью;
- 2) конусобразностью;
- 3) седлообразностью.

- 41. отклонение профиля, при котором образующие непрямолинейны, а диаметры увеличиваются от краёв к середине сечения называется:
- 1) бочкообразностью;
- 2) конусобразностью;
- 3) седлообразностью.

- 42. отклонение профиля, при котором образующие непрямолинейны, а диаметры уменьшаются от краёв к середине сечения называется:
- 1) бочкообразностью;
- 2) конусобразностью;
- 3) седлообразностью.

No37

- 43.разность D наибольшего и наименьшего расстояний от точек реальной торцовой поверхности, до плоскости, перпендикулярной базовой оси вращения называется:
- 1) неперпендикулярность осей или оси и плоскости;
- 2) радиальное биение;
- 3) торцевое биение.

№38

- 44. разность наибольшего и наименьшего расстояний от точек реальной поверхности до базовой оси вращения в сечении, перпендикулярном этой оси называется:
- 1) неперпендикулярность осей или оси и плоскости;
- 2) радиальное биение;
- 3) торцевое биение.

№39

- 45. Разность расстояний между осями или осью и плоскостью на заданной длине называется:
- 1) неперпендикулярность осей или оси и плоскости;
- 2) радиальное биение;
- 3) торцевое биение.

Nº40

- 46.разность наибольшего и наименьшего расстояний между осью и прилегающей плоскостью на заданной длине называется:
- 1) непараллельность оси вращения и плоскости;
- 2) радиальное биение;
- 3) торцевое биение.

No41

- 47. наибольшее расстояние между осью рассматриваемой поверхности и осью базовой поверхности на всей длине рассматриваемой поверхности или расстояние между этими осями в заданном сечении называется:
- 1) несоосностью;

- 2) радиальное биение;
- 3) торцевое биение.

- 48.Отклонение параметров реальных поверхностей детали от заданных на чертеже ещё называется:
- 1) погрешностью;
- 2) радиальное биение;
- 3) торцевое биение.

№43

- 49.совокупность микронеровностей, образующих рельеф поверхности и рассматриваемых в пределах участка, длина которого равна базовой длине называется:
- 1) шероховатостью;
- 2) радиальным биением;
- 3) торцевым биением.

Nº44

- 50.Метод основанный на визуальном сопоставлении обработанной поверхности с эталоном невооруженным глазом или под микроскопом, а также по ощущениям при ощупывании рукой называется:
- 1) количественным методом оценки шероховатости;
- 2) радиальным биением;
- 3) качественным методом оценки шероховатости.

No45

- 51.Метод основанный на измерении микронеровностей поверхности с помощью приборов называется:
- 1) количественным методом оценки шероховатости;
- 2) радиальным биением;
- 3) качественным методом оценки шероховатости.

No46

- 52.прибор, позволяющий получать изображение микронеровностей профиля в увеличенном масштабе на каком-либо носителе называется:
- 1) профилометром;
- 2) профилографом;
- 3) профилограф-профилометр.

No47

- 53. прибор, позволяющий произвести необходимые измерения профиля микронеровностей называется:
- 1) профилометром;
- 2) профилографом;
- 3) профилограф-профилометр.

- 54. поверхность, совокупность поверхностей, ось, точку детали или сборочной единицы, по отношению к которым ориентируются другие детали изделия или поверхности детали, обрабатываемые или собираемые на данной операции, называют:
- 1) конструкторской базой;
- 2) технологической базой;
- 3) базой.

№49

- 55. поверхность детали, относительно которой конструктором задаются расстояния до других поверхностей называют:
- 1) конструкторской базой;
- 2) технологической базой;
- 3) измерительной базой.

№50

- 56.база относительно которой конструктором задаётся расположение поверхностей, определяющих положение самой детали в изделии называют:
- 1) основной конструкторской базой;
- 2) технологической базой;
- 3) измерительной базой.

№51

- 57. база относительно которой конструктором задаётся расположение присоединяемой детали относительно данной называют:
- 1) вспомогательной конструкторской базой;
- 2) технологической базой;
- 3) измерительной базой.

- 58. поверхность, определяющую положение детали в приспособлении в процессе её изготовления называют:
- 1) конструкторской базой;
- 2) технологической базой;
- 3) измерительной базой.

- 59. поверхность детали, относительно которой производится контроль полученных размеров, которой определяется положение детали в измерительном приспособлении называют:
- 1) конструкторской базой;
- 2) технологической базой;
- 3) измерительной базой.

№54

- 60.Станочные приспособления, предназначенные для обработки разнообразных заготовок, называют:
- 1) специальные приспособления;
- 2) специализированные приспособления;
- 3) универсальные приспособления.

№55

- 61. Станочные приспособления, для обработки заготовок одного типа, называют:
- 1) специальные приспособления;
- 2) специализированные приспособления;
- 3) универсальные приспособления.

№56

- 62.Станочные приспособления, предназначенные для выполнения какой-либо одной операции на данной детали, называют:
- 1) специальные приспособления;
- 2) специализированные приспособления;
- 3) универсальные приспособления.

№57

- 63. угол между главной задней поверхностью резца и плоскостью резания называют:
- 1) главный задний угол;
- 2) передний угол;
- 3) угол заострения.

- 64.угол между передней и главной задней поверхностью резца называют:
- 1) главный задний угол;
- 2) передний угол;
- 3) угол заострения.

- 65.угол между передней поверхностью лезвия и основной плоскостью называют:
- 1) главный задний угол;
- 2) передний угол;
- 3) угол заострения.

14.Образовательные технологии

Предусмотрено чтение лекций с применением мультимедийных технологий, проведение интерактивных практикумов (в совокупности — не менее 20% аудиторных занятий).

Внеаудиторная самостоятельная работа студентов проводится с использованием ресурсов сети Интернет и локальных сетевых ресурсов ЭТИ СГТУ.

14. Образовательные технологии

Реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

В учебном процессе при изучении дисциплины используются следующие формы проведения занятий:

- лекции с изложением определений основных понятий, изучаемых в рамках дисциплины, подробным описанием и доказательством наиболее важных свойств этих понятий и их взаимосвязей друг с другом;
- практические занятия с подробным изучением основных свойств понятий, изучаемых в рамках дисциплины, выяснением их взаимосвязей друг с другом в примерах и практических задачах;
- индивидуальные и коллективные консультации с активным участием обучающихся по наиболее сложным частям теоретического материала дисциплины;
- самостоятельная работа по выполнению заданий по основным разделам дисциплины.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

ОСНОВНАЯ ЛИТЕРАТУРА

1. Бондаренко, Ю. А. Основы технологии машиностроения : учебное пособие / Ю. А. Бондаренко, М. А. Федоренко, Т. М. Санина. —

Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2018. — 185 с. — Режим доступа: https://www.iprbookshop.ru/92281.html

2. Архипова, Н. А. Процессы и операции формообразования. Режимы резания : учебное пособие / Н. А. Архипова, Т. А. Блинова, В. Я. Дуганов. — Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2018. — 64 с. — ISBN 2227-8397. — Режим доступа: https://www.iprbookshop.ru/92291.html

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 3. Технология конструкционных материалов. Физико-механические основы обработки металлов резанием и металлорежущие станки : учебное пособие / В. Е. Гордиенко, А. А. Абросимова, В. И. Новиков [и др.]. Санкт-Петербург : Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2017. 84 с. Режим доступа: https://www.iprbookshop.ru/74354.html
- 4. Автоматизация выбора режущего инструмента для станков с ЧПУ: монография / В. И. Аверченков, А. В. Аверченков, М. В. Терехов, Е. Ю. Кукло. Брянск : Брянский государственный технический университет, 2012. 148 с. Режим доступа: https://www.iprbookshop.ru/6989.html

ИНТЕРНЕТ-РЕСУРСЫ

- 5. eLibrary.ru электронная библиотечная система. режим доступа: http://elibrary.ru/defaultx.asp
- 6. IPRbooks электронно-библиотечная система. режим доступа: http://www.iprbookshop.ru/ по паролю.
- 7. ЭБС «Консультант студента» электронная библиотека технического вуза. режим доступа: http://www.studentlibrary.ru, по паролю
- 8. Единое окно доступа к образовательным ресурсам информационная система. режим доступа: http://window.edu.ru/

ИСТОЧНИКИ ИОС

9. http://techn.sstu.ru

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стульев проектор BENQ 631, рулонный проекционный экран, системный блок (Atom2550/4Гб/500, клавиатура, мышь), подключенный в сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome

Учебная аудитория для проведения занятий семинарского типа, выполнения курсовых работ, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения: 10 столов, 20 стульев; рабочее место преподавателя; маркерная доска; проектор BENQ 505, рулонный проекционный экран, ноутбук Samsung (I3/4Гб/500, мышь), подключенный в сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., демонстрационные наборы и учебнонаглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome

Рабочую программу составил

17. Дополнения и изменения в рабочей программе

Рабочая пр	рограмма пересмотр	ена на заседании кафед	цры
«»	20год	ца, протокол №	
	Зав. кафедрой	/	/
Внесенные измен	ения утверждены на	заседании УМКС/УМ	КН
«		года, протокол №	
Пред	седатель УМКС/УМ	_	_/