Энгельсский технологический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Технология и оборудование химических, нефтегазовых и пищевых производств»

РАБОЧАЯ ПРОГРАММА по дисциплине Б.1.3.6.2. ОСНОВЫ ЭНЕРГО - И РЕСУРСОСБЕРЕЖЕНИЯ

направление подготовки: 21.03.01 «Нефтегазовое дело» Профиль: Эксплуатация и обслуживание технологических объектов нефтегазового производства

форма обучения – очная курс - 3семестр – 6 зачетных единиц – 4 часов в неделю – 4 всего часов – 144 в том числе: лекции – 32 практические занятия – 32 лабораторные занятия – нет самостоятельная работа – 80 зачет – нет экзамен – 6 семестр РГР – нет курсовая работа – нет курсовой проект – нет

Рабочая программа обсуждена на заседании кафедры ТОХП 20.06.2022 года, протокол №10 Зав. кафедрой Мемпер Н.Л.Левкина

Рабочая программа утверждена на заседании УМКН направления НФГД 27.06.2022 года, протокол №5 Председатель УМКН МаммаН.Л.Левкина

Энгельс 2022

1. Цели и задачи дисциплины

Основной целью изучения дисциплины является приобретение студентами знаний по принципам преобразования видов энергии в технических системах, формирование умений применять приобретенную совокупность знаний при выполнении расчетов энергоиспользования в технологических процессах и в оборудовании, а также при анализе теплотехнологических промышленных систем.

Задача дисциплины состоит в том, чтобы на основании полученных знаний будущий специалист мог участвовать в разработке энергоэффективных и конкурентоспособных технологий и оборудования и осуществлять технологический процесс в соответствии с требованиями и задачами энерго-и ресурсосбережения.

2. Место дисциплины в структуре ООП ВПО

Учебная дисциплина «Основы энерго - и ресурсосбережения» входит в вариативную часть профессионального цикла направления подготовки 21.03.01. «Нефтегазовое дело» первого уровня высшего профессионального образования бакалавриата.

Дисциплина базируется на предварительном изучении следующих курсов: Математика, Физика, Механика жидкости и газа, Информатика. Необходимыми условиями для освоения дисциплины являются: знание основных законов физики, умения строить модели и решать конкретные задачи определенной степени сложности, владение целостной системой знаний, формирующей физическую картину окружающего мира. Знания, умения и навыки, полученные студентами в процессе изучения дисциплины, являются базой для изучения следующих дисциплин: Процессы и аппараты химических производств, Оборудование химических и нефтехимических производств, Способы и средства энерго- и ресурсосбережения.

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование компетенций $O\Pi K$ -6,7, ΠK -1.

Студент должен знать:

- основы энергоиспользования в производственных системах;
- закономерности преобразования видов энергии;
- основные уравнении термодинамических процессов;
- основные уравнения переноса импульса и тепла;
- методы анализа и расчета теплотехнологических процессов и оборудования;
- методы энерго- и ресурсосбережения в промышленных технологиях.

Студент должен уметь:

- определять основные характеристики процессов энергообмена;
- использовать математические модели процессов при анализе энергопотребления;
- определять термодинамические параметры процессов в промышленных аппаратах.

Студент должен владеть:

- методами определения энергоэффективных и рациональных технологических режимов работы оборудования.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

граммы	
Код и наименование ком- петенции (результат освоения)	Код и наименование индикатора достижения компетенции (составляющей компентенции)
ОПК-6. Способен прини-	ИД-1 _{ОПК-6} Знает принципы информационно-
мать обоснованные тех-	коммуникационных технологий
нические решения в про-	и основные требования информационной без-
фессиональной деятель-	опасности.
ности, выбирать эффек-	ИД-20ПК-6 Умеет решать стандартные задачи
тивные и безопасные тех-	профессиональной деятельности на основе ин-
нические средства, и тех-	формационной и библиографической культуры
нологии.	с применением современных технологий и
	требований информационной безопасности
	ИД-3 _{ОПК-6} Владеет навыками решения стан-
	дартных задач профессиональной деятельно-
	сти на основе современных информационных
	технологий и с учетом требований информа-
	ционной безопасности
ОПК-7. Способен анали-	ИД-1 _{ОПК-7} Знает содержание макетов производ-
зировать, составлять и	ственной документации, связанных с профес-
применять техническую	сиональной деятельностью
документацию, связан-	ИД-2 _{ОПК-7} Умеет обобщать информацию и за-
ную с профессиональной	носить в бланки макетов в соответствии с дей-
деятельностью, в соот-	ствующими нормативами
ветствии с действующи-	ИД-3 _{опк-7} Владеет навыками составления отче-
ми нормативными право-	тов, обзоров, справок, заявок и др., опираясь на
выми актами.	реальную ситуацию
	ИД-4 _{ОПК-7} Умеет использовать основные виды
	и содержание макетов производственной до-

	<u>4</u>
Код и наименование ком- петенции (результат освоения)	Код и наименование индикатора достижения компетенции (составляющей компентенции)
	кументации, связанных с профессиональной
	деятельностью
ПК-1 Способен внедрять	ИД-1 _{ПК-1} Знает методы оценки эффективности
_	внедрения новой техники и технологии, орга-
новую технику и передо-	1
вые технологии.	низации труда, рационализаторских предложе-
	ний и изобретений, а также требования феде-
	ральных, локальных нормативных актов, ин-
	струкций, правил по промышленной и пожар-
	ной безопасности, охране труда.
	ИД-2 _{ПК-1} Способен разрабатывать проектную и
	рабочую техническую документацию, техни-
	ческие задания на проектно-конструкторские
	работы, разбираться в нормативно-
	технической документации, читать чертежи,
	схемы и прочие нормативные документы.
	ИД-4 _{ПК-1} Обладает знаниями по обеспечению
	выполнения работ, связанных с перевооруже-
	нием, капитальным ремонтом и модернизацией
	технологических объектов, проведению мон-
	_
	тажа нового оборудования на технологических
	объектах.
	ИД-5 _{ПК-1} Обладает знаниями по подготовке
	предложения в планы внедрения новой техни-
	ки и оборудования, в планы реконструкций
	производственных объектов.

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
ИД-1 _{ОПК-6} Знает принципы ин-	Знает способы и средства совершен-
формационно-коммуникационных	ствования нефтегазовых технологиче-
технологий	ских процессов, мероприятия по ком-
и основные требования информа-	плексному использованию сырья, по
ционной безопасности.	замене дефицитных материалов и
	изысканию способов утилизации от-
	ходов производства, к исследованию
	причин брака в производстве и разра-
	ботке предложений по его предупре-
	ждению и устранению
ИД-2 _{ОПК-6} Умеет решать стан-	Умение выбирать оптимальные реше-
дартные задачи профессиональ-	ния при создании продукции с учетом
ной деятельности на основе ин-	требований энерго-и ресурсосбереже-

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
формационной и библиографической культуры с применением современных технологий и требований информационной безопасности	ния, качества, надежности и стоимости, а также сроков исполнения, безопасности жизнедеятельности и экологической чистоты
ИД-3 _{ОПК-6} Владеет навыками решения стандартных задач профессиональной деятельности на основе современных информационных технологий и с учетом требований информационной безопасности	Владение способностью применять в практической деятельности принципы рационального использования природных ресурсов и защиты окружающей среды
ИД-1 _{ОПК-7} Знает содержание макетов производственной документации, связанных с профессиональной деятельностью	Знание содержания производственной документации, связанных с профессиональной деятельностью
ИД-2 _{ОПК-7} Умеет обобщать информацию и заносить в бланки макетов в соответствии с действующими нормативами	Умение обобщать данные по теплофизическим свойствам нефти, нефтепродуктов, углеводородных газов, теплоносителей и рабочих тел;
ИД-3 _{ОПК-7} Владеет навыками составления отчетов, обзоров, справок, заявок и др., опираясь на реальную ситуацию	Владение приемами определения правильности полученных численных результатов выполняемых расчетов; методиками расчета основных режимных, конструктивных, гидравлических и теплообменных характеристик установок, отвечающих условиям оптимальности
ИД-4 _{ОПК-7} Умеет использовать основные виды и содержание макетов производственной документации, связанных с профессиональной деятельностью	Умение использовать основные виды и содержание макетов производственной документации, связанных с профессиональной деятельностью
ИД-1 _{ПК-1} Знает методы оценки эффективности внедрения новой техники и технологии, организации труда, рационализаторских предложений и изобретений, а также требования федеральных, локальных нормативных актов, инструкций, правил по промыш-	Знание способов определения оптимальных решений при создании продукции с учетом требований энерго- и ресурсосбережения, качества, надежности и стоимости, а также сроков исполнения, безопасности жизнедеятельности и экологической чистоты

Наименование показателя оценивания
(результата обучения по дисциплине)
Умение разрабатывать проектную и
рабочую техническую документацию,
технические задания на проектно-
конструкторские работы, разбираться
в нормативно-технической документа-
ции, читать чертежи, схемы и прочие
нормативные документы.
Владение знаниями по обеспечению
выполнения работ, связанных с пере-
вооружением, капитальным ремонтом
_
объектов, проведению монтажа нового оборудования на технологических
оборудования на технологических объектах.
OUDCRIAA.
Владеет знаниями по подготовке
предложения в планы внедрения новой
техники и оборудования, в планы ре-
конструкций производственных объ-
ектов.

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

№	№	№	Наименование темы	Всего	Лек-	Кол-	Лабо-	Прак-	CPC
мод.	нед.	темы		часов	ции	ло-	pa-	тиче-	
						квиу-	тор-	ские	
						МЫ	ные	заня-	
							заня-	ТИЯ	
							ТИЯ		
1	2	3	4	5	6		7	8	9
1	1,2	1	Роль природных ресурсов в жизни общества и актуальность энерго- и ресурсосбережения	24	4		-	4	16
2	3,4	2	Виды и способы получения, преобразо-	24	4		-	4	16

			вания и использова-				,	
			ния энергии. Мето-					
			ды и критерии					
			оценки эффектив-					
			ности использова-					
			ния энергии					
3	5÷7	3	Управление энерго-	26	4	-	4	18
			снабжением и энер-					
			гопотреблением на					
			промышленном					
			предприятии.					
4	8÷	4	Теоретические ос-	50	8	-	12	30
	15		новы сжигания ор-					
			ганического топли-					
			ва					
5	16	5	Приоритетные	20	2	-	2	16
			направления энер-					
			госбережения в от-					
			раслях экономики					
			ИТОГО:	144	22	-	26	96

5. Содержание лекционного курса

3.0	ъ	3.0		T
$N_{\underline{0}}$	Всего	№	Тема лекции.	Учебно-
темы	часов	лекции	Вопросы, отрабатываемые на лекции.	методическое
				обеспечение
1	2	3	4	5
1	2	1	Вводная лекция. Предмет курса, его цели	[1,2]
			и задачи.Содержание курса .Связь с дру-	
			гими дисциплинами. Формы учебных за-	
			нятий и отчетность по курсу. Литература	
			для изучения курса. Топливно-	
			энергетические ресурсы. Ресурсы прес-	
			ной воды и рудных материалов.	
1	2	2	Сущность энерго- и ресурсосбережения.	[1,2]
			Взаимосвязь энергетики, промышленных	
			технологий и экологии.	
2	2	3	Энергия и ее виды. Способы получения и	[2,5]
			преобразования энергии. Транспортиро-	
			вание и потребление тепловой и электри-	
			ческой энергии.	
2	2	4	•	
			Энергетическое хозяйство промышлен-	

	T		T	8
			ных предприятий.	
3	4	5,6	Термодинамические показатели оценки	[1-6]
			энергетической эффективности.	
			Технические и экологические показатели	
			энергоэффективности.	
			Задачи и методы обследования промыш-	
			ленного предприятия. Энергетические	
			балансы потребителей топливно- энерге-	
			тических ресурсов.	
			Нормирование расхода топливно-	
			энергетических ресурсов. Классификация	
			энергосберегающих мероприятий по ви-	
			ду и составу экономического эффекта.	
			Нормирование и учет энергопотребления	
			на промышленном предприятии.	
4	2	7	Виды органического топлива, их запасы.	[5]
			Генезис твердого, жидкого и газообразно-	
			го топлива.	
			Основные характеристики топлива. Ра-	
4			бочая, сухая и горючая массы топлива.	5.63
4	2	8	Транспортирование топлива. Транспорт-	[5]
			ные системы для подачи топлива.	
			Магистральные, местные и распреде-	
4			лительные сети для газового топлива.	[6]
4	2	9	Горение топлива. Расчеты горения топ-	[5]
			лива.	
			Энергосбережение при сжигании топли-	
			ва. Особенности сжигания твердого топ-	
Λ	2	10	лива и топочные устройства.	[5]
4	2	10	Особенности сжигания жидкого топлива	[5]
			и форсуночные устройства.	
			Особенности сжигания газового топлива.	
			Горелки и топки для сжигания газового топлива.	
5	2	11	Развитие отраслей топливно-	[1,2]
J		111	энергетического комплекса.	[1,4]
			Энерготехнологические системы и ком-	
			плексы в отраслях промышленности.	
		1	плекем в отрасила промышленности.	<u> </u>

6. Содержание коллоквиумов

Коллоквиумы учебным планом не предусмотрены

7. Перечень практических занятий

No	Всего	$N_{\underline{0}}$	Тема практического занятия.	Учебно- ме-
темы	часов	занятия	Вопросы, отрабатываемые	тодическое
			на практическом занятии	обеспечение
1	2	3	4	
1	4	1, 2	Законы сохранения. Первый и второй законы термодинамики. Термодинами-	[3,4]
			ческие параметры и функции состояния. Законы переноса импульса и теплоты. Расчеты теплообмена и теплопередачи.	
2	4	3, 4	Эксергетический метод термодинамического анализа процессов преобразования энергии. Расчет срока окупаемости мероприятий по энергосбережению. Использование критерия приведенных затрат для выбора наилучшего варианта технического решения.	[1,6]
3	4	5,6	Приемы и методы проведения энергетического аудита. Используемые измерительные средства при аудите. Составление тепловых балансов. Расчеты статей тепловых балансов.	[1,4,7]
4	12	7 - 12	Методика расчета процесса горения топлива. Практические расчеты горения разных видов топлива. Расчеты и выбор горелок, форсунок и топок. Расчет вредных выбросов в окружающую среду при сжигании топлива.	[4,5]
5	2	13	Связь энергетики, промышленных технологий и экологии в жизни человеческого сообщества. Составление материального и энергетического балансов производственного агрегата.	[1,2,5]

8. Перечень лабораторных работ

Лабораторный практикум учебным планом не предусмотрен.

9. Задания для самостоятельной работы студентов

No	Всего	Задания, вопросы для самостоятельного изучения	Учебно-
темы	часов		методическое
			обеспечение
1	2	3	4
1	16	Классификация топливно-энергетических ресур-	[1,2]
		сов. Единицы измерения топливно-	
		энергетических ресурсов. Структура энергетики	
		России.	
		Невозобновляемые и возобновляемые источники	
		энергии; их потенциал.	
2	16	Транспортирование и распределение природного	[5]
		газа, жидкого и твердого топлива. Затраты энер-	
		гии на транспортирование топлива. Транспорти-	
		ровка электрической энергии. Теплотехнологиче-	
		ское оборудование промышленных предприя-	
		тий.эксергетические характеристики производ-	
		ственных высокотемпературных процессов и аг-	
		регатов. Эффективность комбинированных теп-	
	1.0	лоиспользующих установок.	543
3	18	Эксергия теплового потока и потока вещества.	[1]
		Расчет эксергии. Эксергетический к.п.д. Уравне-	
		ние Гюи-Стодолы. Натуральные показатели оцен-	
		ки энергетической эффективности.	
		Нормирование потребления энергоресурсов в зда-	
		ниях и сооружениях. Нормирование потребления	
		энергоресурсов в промышленности. Нормативные	
		эксплуатационные технологические затраты и по-	
1	20	тери тепловой энергии в тепловых сетях.	[1 2]
4	30	Местные топливно-энергетические ресурсы.	[1,2]
		Охрана атмосферного воздуха от загрязнений	
		промышленными предприятиями. Инвентариза-	
		ция выбросов в атмосферу загрязняющих веществ	
		при сжигании топлива. Организация контроля вы-	
5	1.0	бросов в атмосферу при сжигании топлива.	[2, 5]
5	16	Стратегия развития отечественной энергетики до	[2, 5]
		2020 г. Стандартизация, сертификация и метроло-	
		гия в области энергосбережения. Законодатель-	
		ство РФ об энергосбережении. Основы государ-	
		ственного управления энергосбережением.	

10. Расчетно-графическая работа

Учебным планом не предусмотрена

11. Курсовая работа

Учебным планом не предусмотрена

12. Курсовой проект

Учебным планом не предусмотрена

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе обучения студент должен полностью выполнить учебный план, предусмотренный вузовской рабочей учебной программой дисциплины, по всем видам учебных занятий и набрать 4 зачетные единицы трудоемкости. В частности, он должен выполнить все предусмотренные программой практические занятия в виде установленных практикумов, самостоятельных видов работы.

В результате освоения дисциплины студент должен сформировать следующие компетенции:

ОПК-6. Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства, и технологии.

ОПК-7. Способен анализировать, составлять и применять техническую документацию, связанную с профессиональной деятельностью, в соответствии с действующими нормативными правовыми актами.

ПК-1 Способен внедрять новую технику и передовые технологии.

Рекомендуемая балльно-рейтинговая система оценки

Степень успешности освоения дисциплины в системе зачетных единиц оценивается суммой баллов, исходя из 10 максимально возможных, и включает две составляющие:

Первая составляющая — оценка преподавателем итогов учебной деятельности студента по изучению каждого модуля дисциплины в течение предусмотренного учебным планом временного отрезка (в сумме не более, чем 8 баллов). Структура баллов, составляющих балльную оценку преподавателя, включает отдельные доли в баллах, начисляемые студенту за успешность рубежных контролей по каждому учебно-образовательному модулю.

Вторая составляющая - за посещаемость аудиторных лекционных и практических занятий (пропорционально числу посещенных занятий).

Методика рубежного контроля по первой составляющей балльнорейтинговой оценки.

Максимальное количество баллов по каждому учебнообразовательному модулю — 10 баллов. Оценочное средство представляет собой билет, состоящий из 4 вопросов, сформированных на основе дидактического минимума содержания и содержания учебно-образовательного модуля, представленного в рабочей учебной программе. Оценка ответов на билет осуществляется по следующей схеме:

правильный и полный ответ на вопрос - +2 балла;

в целом правильный, но не полный ответ, наличие несущественных ошибок - +1 балл; отсутствие ответа – 0 баллов; принципиально неверный ответ - - 2 балла; за пропуск каждой лекции и семинара по модулю - - 0,05 балла.

Для оценки текущего уровня формирования компетенций проводятся письменные опросы по теории (модули) и практике (контрольные работы). В конце семестра предусмотрено компьютерное тестирование как допуск к экзамену.

Сформированность компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенции по завершении освоения дисциплины;
- высокий уровень характеризуется максимально возможной выраженностью компетенции и является важным качественным ориентиром для самосовершенствования.

Пороговый	студент, обнаруживший знание материала изученной дис-
уровень	циплины в объеме, необходимом для дальнейшей учебы и
	предстоящей работы по профессии, справляющийся с вы-
	полнением заданий, знакомый с основной литературой, ре-
	комендованной рабочей программой дисциплины; допу-
	стившим погрешность в ответе на теоретические вопросы,
	но обладающий необходимыми знаниями для их устране-
	ния под руководством преподавателя.
Продвинутый	студент, обнаруживший полное знание материала изучен-
уровень	ной дисциплины, успешно выполняющий предусмотрен-
	ные задания, усвоивший основную литературу, рекомендо-
	ванную рабочей программой дисциплины; показавшему
	систематический характер знаний по дисциплине, отве-
	тившему на все вопросы билета, но допустившему при

	этом непринципиальные ошибки.			
Высокий	студент, обнаруживший всестороннее, систематическое и			
уровень	глубокое знание материалов изученной дисциплины, уме-			
	ние свободно выполнять задания, предусмотренные про-			
	граммой, усвоивший основную и знакомый с дополнитель-			
	ной литературой, рекомендованной рабочей программой			
	дисциплины; проявивший творческие способности в пони-			
	мании, изложении и использовании материалов изученной			
	дисциплины, безупречно ответившему не только на вопро-			
	сы билета, но и на дополнительные вопросы в рамках рабо-			
	чей программы дисциплины.			

При достаточном качестве освоения приведенных знаний, умений и навыков (оценка «отлично» на экзамене и модулях, выполнении практических занятий) преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на высоком уровне, при освоении приведенных знаний, умений и навыков (оценка «хорошо» на экзамене и модулях, выполнении практических занятий) — на продвинутом, при освоении приведенных знаний, умений и навыков (оценка «удовлетворительно» на экзамене и модулях, выполнении практических занятий) - на пороговом уровне. В противном случае компетенция в рамках настоящей дисциплины считается неосвоенной.

Критерии оценки для контрольного тестирования (допуск к экзамену):

- Контрольное тестирование зачтено, если студент дал правильные ответы на контрольные вопросы от 60 и более процентов.
- Контрольное тестирование не зачтено, если студент дал правильные ответы в промежутке от 0 до 59%.

Критерии оценки для экзамена:

- Оценки «отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание материалов изученной дисциплины, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной рабочей программой дисциплины; проявивший творческие способности в понимании, изложении и использовании материалов изученной дисциплины, безупречно ответившему не только на вопросы билета, но и на дополнительные вопросы в рамках рабочей программы дисциплины.
- Оценки «хорошо» заслуживает студент, обнаруживший полное знание материала изученной дисциплины, успешно выполняющий предусмотренные задания, усвоивший основную литературу, рекомендованную рабочей программой дисциплины; показавшему систематический характер

знаний по дисциплине, ответившему на все вопросы билета, но допустившему при этом непринципиальные ошибки.

• Оценки «удовлетворительно» заслуживает студент, обнаруживший знание материала изученной дисциплины в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, знакомый с основной литературой, рекомендованной рабочей программой дисциплины; допустившим погрешность в ответе на теоретические

вопросы, но обладающий необходимыми знаниями для их устранения под руководством преподавателя.

• Оценка «неудовлетворительно» выставляется студенту, обнаружившему серьезные пробелы в знаниях основного материала изученной дисциплины, допустившему принципиальные ошибки в выполнении заданий, не ответившему на все вопросы билета и дополнительные вопросы. Как правило, оценка «неудовлетворительно ставится студентам, которые не могут продолжить обучение по образовательной программе без дополнительных занятий по соответствующей дисциплине (формирования и развития компетенций, закреплённых за данной дисциплиной). Оценка «неудовлетворительно» выставляется также, если студент: после начала экзамена отказался его сдавать или нарушил правила сдачи экзамена (списывал, подсказывал, обманом пытался получить более высокую оценку и т.д.)

Примеры типовых контрольных заданий для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины, а также для контроля самостоятельной работы обучающегося по отдельным разделам дисциплины.

Текущий контроль

Модуль 1.

- 1. Назовите топливно-энергетические ресурсы, которые можно отнести к первичным и которые нельзя отнести к первичным.
- 2. Назовите ориентировочные значения теплоты сгорания различных видов органического топлива.
- 3. Какие из нетрадиционных и возобновляемых энергетических ресурсов с Вашей точки зрения наиболее перспективны для использования в энергетике России?
- 4. Равна ли высшая теплота сгорания низшей при сжигании сухого угля и сухого газа?
- 5. Какие виды энергетических ресурсов относятся к моторному топливу?
- 6.Для каких целей используется тепловая энергия в промышленности и жилищно-коммунальном хозяйстве?
- 7. Какая часть получаемой в России электрической энергии вырабатывается на атомных электростанциях?
- 8. В каких единицах измеряется теплота сгорания газообразного топлива?
- 9. Что является основным производителем тепловой энергии в России ТЭЦ или котельные?
- 10. Назовите основные виды вторичных энергетических ресурсов.
- 11.Для чего вводятся понятия «условное топливо», «первичное условное топливо»?
- 12. Поясните разницу между понятиями «ядерное топливо» и «ядерное горючее».
- 13. Поясните особенности взаимного перевода энергетических единиц первичного топлива, тепловой и электрической энергии.
- 14. Почему энергосбережение особенно актуально в России?
- 15. Каково общее потребление энергоресурсов в мире и в России?
- 16. Каковы причины большей энергоемкости ВВП в России по сравнению с промышленно развитыми странами?
- 17. Дайте определение понятию «энергосбережение».
- 18. Что такое потенциал энергосбережения?
- 19. Каков потенциал энергосбережения экономики России? Как он распределяется по отраслям хозяйственной деятельности?
- 20. Каковы прогнозы изменения потребления различных энергетических ресурсов в мировой экономике и в России?
- 21. Что означает понятие «энергетическая безопасность страны»? Назовите ее важнейшие принципы. Какие проблемы нужно решить для ее достижения?

- 22. Почему экономия материалов и уменьшение количества отходов приводят к экономии энергии?
- 23. Охарактеризуйте структурные комплексы, входящие в структурную схему функционирования энергетики России.
- 24. Почему при экономии энергии необходимо рассматривать систему «производитель потребитель» как единое целое?
- 25. Оцените сокращение выбросов в атмосферу оксидов азота при экономии 1000 т мазута в год.
- 26. Почему экономия единицы энергии у потребителей энергетических ресурсов дает больший эффект, чем ее экономия при производстве и распределении?
- 27. По каким показателям можно судить об эффективности использования энергии в той или иной стране?
- 28. Что такое первичная энергия? Приведите классификацию первичных энергетических ресурсов.
- 29. Какие виды первичных энергетических ресурсов относятся к местным энергетическим ресурсам?
- 30. Какими компонентами определяется состав ископаемого твердого и жидкого топлива?
- 31. Что такое теплота сгорания топлива? Как выбор теплоты сгорания влияет на эффективность использования топлива?
- 32. Что такое условное топливо? Назовите угольный и нефтяной эквивалент топлива.
- 33. Укажите термодинамические критерии, позволяющие оценить эффект энергосбережения.
- 34. Приведите выражение коэффициента эффективности теплоутилизатора и объясните его сущность.
- 35. Назовите возможные способы повышения КПД энергетической или теплотехнологической установки.
- 36. Почему одновременно с термодинамическими показателями вводятся технические (натуральные) показатели эффективности использования энергии?
- 37. Приведите примеры нескольких частных натуральных показателей энергоэффективности, которые можно использовать для характеристики процессов, связанных с производством, транспортировкой и использованием энергии в различных областях.
- 38. Дайте определения нескольким натуральным показателям энергоэффективности промышленных предприятий.
- 39. Поясните понятие «технологическое топливное число», перечислите входящие в него составляющие.
- 40. Поясните роль энергии, полученной за счет вторичных энергоресурсов, в определении технологического числа.
- 41. Укажите примерные затраты на ТЭР в себестоимости продукции на предприятиях различных отраслей промышленности.

- 42. Назовите технико-экономические показатели, которые можно использовать при оценке энергосберегающих проектов.
- 43. Дайте определения энергетического баланса, подведенной и полезной энергии, а также потерь энергии? Как классифицируются потери энергии?
- 44. Как классифицируются энергетические балансы?
- 45. Какие особенности надо учитывать при составлении аналитического энергетического баланса?
- 46. Для каких объектов составляются энергетические балансы?
- 47. Перечислите требования, которые предъявляются к форме и содержанию энергетических балансов промышленных объектов.
- 48. Какие статьи содержит энергетический баланс промышленного объекта?
- 49. Перечислите составляющие теплового баланса здания и поясните физический смысл каждой из них.

Какие требования предъявляются к ограждающим конструкциям зданий и сооружений?

- 50. Какие из параметров окружающего воздуха принимаются в качестве расчетных?
- 51. В чем различие эксплуатационно-неизбежных и нерациональных потерь энергии?
- 52. Как формируются нормы теплопотребления зданиями и сооружениями на стадии проектирования?
- 53. Поясните физические основы нормирования теплопотребления зданиями по укрупненным показателям. В каких случаях используется этот метол?
- 54. В чем заключаются особенности нормирования расхода приточного воздуха в системах вентиляции и кондиционирования?
- 55. Какой из расходов горячей воды используется в качестве расчетного для нормирования теплопотребления в системе горячего водоснабжения?
- 56. Какие факторы влияют на нормы потребления тепловой энергии зданиями?
- 57. Как уменьшить теплопотребление в здании?
- 58. Что такое энергетические отходы? Назовите их типы.
- 59. Что такое ВЭР? Как они классифицируются? Каким параметром определяется энергетический потенциал каждого из видов ВЭР?
- 60. Как рассчитать удельный и общий выход ВЭР?
- 61. Как оценить экономию топлива за счет использования тепловых ВЭР или горючих ВЭР?
- 62. Какие источники и виды горючих ВЭР есть в России?
- 63. Какие устройства применяются для утилизации древесных отходов с целью получения энергии?
- 64. Приведите технологическую схему утилизации древесных отходов с целью получения энергии.

Модуль 2.

- 65. Какую роль играют теплообменные аппараты в энергоснабжении?
- 66. Приведите пример использования тепловых ВЭР.
- 67. С помощью, каких устройств утилизируются ВЭР избыточного давления?
- 68. Для чего предназначены трансформаторы тепла? Назовите их типы.
- 69. Какие параметры характеризуют эффективность теплового насоса, холодильной машины и комбинированного трансформатора тепла?
- 70. Объясните принцип работы компрессионного трансформатора тепла.
- 71. Каков принцип работы абсорбционного трансформатора тепла?
- 72. Объясните принцип работы адсорбционного трансформатора тепла.
- 73. Приведите примеры использования трансформаторов тепла.
- 74. Что такое световая отдача? Для каких целей применяется этот параметр?
- 75. Перечислите известные источники освещения и назовите их светоотдачу.
- 76. Какие мероприятия позволяют снизить потребление электроэнергии на освещение?
- 77. Назовите виды электроприводов?
- 78. Какие мероприятия позволяют снизить потребление энергии электроприводами?
- 79. Какие способы регулирования производительности центробежных нагнетателей используются? Какие из них позволяют достичь максимального снижения потребления электроэнергии?
- 80. Какие мероприятия приводят к экономии энергии в электротермических установках?
- 81. Как добиться снижения потребления электроэнергии при использовании бытовых электроплит, холодильников, пылесосов?
- 82. Назовите два направления энергосбережения в строительстве, способствующие уменьшению потребления теплоты в зданиях.
- 83. Что дает утепление ограждающих конструкций зданий? Каким образом оно осуществляется?
- 84. Каким образом можно снизить потери теплоты через окна?
- 85. Что такое инфильтрация воздуха? Назовите предельно допустимое значение коэффициента инфильтрации воздуха.
- 86. Как рассчитать потери теплоты через ограждения зданий?
- 87. В чем заключается модернизация систем отопления зданий, направленная на уменьшение теплопотребления?
- 88. Зачем необходим контроль и учет энергоресурсов?
- 89. Какие методы используются для определения количества потребляемого топлива?
- 90. Каким образом можно измерить количество потребляемой теплоты?
- 91. С помощью, каких приборов можно измерить температуру? Как они устроены и каков принцип их работы?

- 92. Какие приборы используются для измерения расхода теплоносителя? Каков принцип их работы?
- 93. Что такое инфракрасная термография? Где она применяется?
- 94. С помощью, каких приборов осуществляется учет электрической энергии?
- 95. Какие электросчетчики предпочтительней использовать?
- 96. Как работает замкнутая система автоматического регулирования?
- 97. В чем отличие разомкнутой системы регулирования от замкнутой?
- 98. Поясните особенности качественного и количественного методов регулирования в системе теплоснабжения.
- 99. Для чего служит термостатирующий вентиль? Как он работает?
- 100. Назовите виды используемых энергоресурсов и основные элементы технологической схемы металлургических предприятий с полным и неполным циклами передела.
- 101. Назовите виды используемых энергоресурсов и основные элементы технологической схемы производства бумажного полотна.
- 102. Поясните понятие технологического процесса, и приведите примеры высокотемпературных и низкотемпературных процессов и установок.
- 103. Назовите основные составляющие теплового баланса теплотехнологического агрегата.
- 104. Перечислите и поясните основные группы мероприятий по снижению энергопотребления в высокотемпературных технологиях.
- 105. Назовите основные виды потерь энергии при тепловой сушке материалов.
- 106. Поясните понятия статики и кинетики сушки.
- 107. Что такое предельный коэффициент рециркуляции сушильного агента и каким образом он влияет на удельные теплопотери?
- 108. В чем заключается кинетическая оптимизация сушильной установки? Приведите примеры энерго-и ресурсосберегающих мероприятий, связанных с кинетической оптимизацией.
- 109. Назовите основные способы экономии энергии в выпарных установ-ках.
- 110. Какие существуют схемы выпарных установок с поверхностными аппаратами?
- 111. Запишите и поясните уравнение теплового баланса ректификационной установки.
- 112. Назовите способы экономии энергии в ректификационных установках.
- 113. Установите применение тепловых насосов в целях энергосбережения в схемах ректификационных установок.
- 114. Как можно классифицировать энергосберегающие мероприятия в зданиях и сооружениях?
- 115. Как влияют учет и контроль расхода энергоресурсов на энергосбережение?

- 116. Каковы основные принципы энергосбережения в зданиях и сооружениях?
- 117. Какие из энергосберегающих мероприятий дают наибольший эффект?
- 118. Приведите примеры энергосберегающих мероприятий в зданиях, в основе которых лежит использование вторичных энергоресурсов.
- 119. Приведите примеры энергосберегающих мероприятий в зданиях, в основе которых лежит использование природных теплоты и холода.
- 120. Как уменьшить потребление электроэнергии насосами и вентиляторами?
- 121. Приведите примеры применения теплонасосных установок в целях тепло-и холодоснабжения зданий.

Модуль 3.

- 122. Дайте определение ВЭР, укажите их виды и приведите выражение для вычисления коэффициента выхода для одного из видов ВЭР.
- 123. Запишите выражения для оценки долей съэкономленных топлива и теплоты за счет утилизации ВЭР.
- 124. Приведите примеры неэффективного использования энергии и возможные варианты энергосбережения.
- 125. Укажите возможные источники и приемы утилизации высокотемпературных ВЭР.
- 126. Поясните теплотехнологию сульфатного способа производства бумаги и назовите источники горючих ВЭР.
- 127. Поясните принципиальную схему газотрубных котлов-утилизаторов и опишите их возможное исполнение.
- 128. Поясните сущность и возможность расчета термической эффективности парогазовой установки.
- 129. Укажите составляющие суммарной экономии энергии при глубокой утилизации теплоты уходящих из котлов газов.
- 130. Нарисуйте принципиальную схему КТАНа и поясните его использование при утилизации теплоты уходящих газов.
- 131. Приведите примеры утилизации теплоты с помощью рекуперативных теплообменников.
- 132. Нарисуйте принципиальную схему использования ТНУ в теплотехнологии.
- 133. Поясните принцип работы парокомпрессионной ТНУ.
- 134. Опишите принцип работы абсорбционной ТНУ.
- 135. От чего зависит коэффициент трансформации теплоты в ТНУ?
- 136. Поясните последовательность выбора парокомпрессионной ТНУ.
- 137. Опишите принципиальную схему использования детандер-генераторных агрегатов и изменение состояния газа в *h*, *s* диаграмме.
- 138. Как можно определить снижение удельного расхода топлива на ТЭС за счет использования ДГА?

- 139. Как осуществляется электроснабжение городов и крупных электропотребителей?
- 140. Назовите основные потребители электрической энергии.
- 141. Зачем и каким образом осуществляется преобразование электрической энергии?
- 142. Назовите условия появления активной и реактивной электрической энергии.
- 143. Почему появление реактивной мощности в электрической сети приводит к дополнительным потерям электроэнергии?
- 144. Какие параметры электрической энергии учитываются при оценке ее качества?
- 145. Как качество электрической энергии связано с экономией энергии и ресурсов?
- 146. Как рассчитываются потери электроэнергии в трансформаторах?
- 147. Каким образом при производстве электроэнергии учитывается неравномерность суточных и сезонных графиков нагрузки?
- 148. Как влияет наличие реактивной составляющей электроэнерии на потери при электропередаче?
- 149. Как реализуется энергосбережение в системе электропривода?
- 150. Каким образом осуществляется энергосбережение при использовании насосов и вентиляторов?
- 151. Как рассчитываются потери электрической энергии в линиях электропередачи?
- 152. Как снижаются потери электроэнергии при переходе на более высокое напряжение в линиях электропередачи?
- 153. Как добиваются повышения энергоэффективности при передаче электрической энергии по проводам ЛЭП и кабелям?
- 154. Как сказываются показатели качества электрической энергии на работе отдельных групп потребителей (электродвигателей, световых источников, электронного оборудования)?
- 155. Какие меры применяют для экономии электроэнергии в системах освещения?
- 156. Какие мероприятия проводят в целях экономии электроэнергии в технологических процессах?
- 157. Как экономия тепловой энергии связана с экономией электрической энергии?
- 158. Поясните связь между энергоаудитом и энергосбережением.
- 159. Дайте определения понятиям «энергетическое обследование» и «энергоаудит».
- 160. Назовите виды энергетических обследований согласно «Правилам проведения энергетических обследований организаций» и кратко укажите их содержание
- 161. Назовите цели, задачи и уровни энергоаудита.
- 162. Какие работы проводятся при экспресс-обследовании?

- 163. Какие работы проводятся при углубленном энергоаудите?
- 164. Поясните возможности установления приоритетности обследования потребления тех или иных энергоресурсов.
- 165. Покажите возможность пересчета в условное топливо составляющих топливно-энергетического баланса предприятия, приводимых в натуральных единицах (для природного газа, мазута, теплоты, электроэнергии, сжатого воздуха).
- 166. Запишите в общем виде энергобаланс промышленного предприятия.
- 167. Приведите принципиальную схему системы воздухоснабжения предприятия и поясните назначения ее элементов.
- 168. Укажите ориентировочные значения удельных расходов электроэнергии на выработку 1000 м3 сжатого воздуха.
- 169. Перечислите возможные направления энергосбережения в системах воздухоснабжения.
- 170. Запишите материальный и тепловой балансы теоретической конвективной сушильной установки.
- 171. Поясните определение параметров воздуха (энтальпии, влагосодержания, парциального давления водяного пара и др.) по данным измерений температуры с помощью мокрого и сухого термометров.
- 172. Поясните необходимость измерения полей скорости и температуры сушильного агента в целях повышения эффективности использования энергии в сушильной установке.
- 173. Почему приборный учет энергоресурсов является важным условием экономии энергии?
- 174. В чем состоит разница между коммерческим и техническим учетами энергоресурсов?
- 175. Почему кроме учета тепловой энергии нужен учет количества теплоносителя?
- 176. Что такое режим отпуска и потребления тепловой энергии?
- 177. Для чего организуется узел учета тепловой энергии?
- 178. Каковы отличительные и общие черты учета тепловой и электрической энергии?
- 179. Назовите основные функции тепловычислителя.
- 180. Какие приборы входят в состав теплосчетчиков?
- 181. Какие виды преобразователей расхода применяются в составе теплосчетчиков?
- 182. Какие из преобразователей расхода позволяют проводить измерения, не создавая дополнительного гидравлического сопротивления в потоке теплоносителя?
- 183. С какой целью предусматриваются прямолинейные участки до установленных на трубопроводах преобразователей расхода и после них?
- 184. Что представляет собой узел учета и регистрации отпуска и потребления тепловой энергии?
- 185. Какие требования предъявляются к теплосчетчикам?

- 186. Какие потребители теплоты могут использовать правила упрощенного учета тепловой энергии?
- 187. Чем различается учет тепловой энергии в открытой и закрытой системах теплоснабжения?
- 188. Что такое граница балансовой принадлежности тепловых сетей?

Тестовые задания по дисциплине

Вариант №1

1. Доля технологического потребления тепловой энергии на химических предприятиях от общего годового теплопотребления составляет в среднем: Ответы:

100 %

77 %

33 %

10 %

2. На какой стадии создания химико-технологического производства возможно с наибольшей степенью влиять на энергетические показатели ? Ответы:

на стадии НИР и ОКР на стадии наладочных работ на стадии проектирования на стадии эксплуатации оборудования

3. Расход хозяйственно-питьевой в сутки на одного человека в среднем составляет: Ответы:

50 л

260 л

330 л

480 л

4. Какой вид энергии, используемой в химико-технологических системах является основным? Ответы:

электрическая

тепловая

атомная

химическая

- 5. Что является основной причиной появления побочных (вторичных) энергоресурсов в промышленных технологиях? Ответы: несовершенство технологий с точки зрения энергоиспользования использование органического топлива в качестве источника энергии неполадки в работе технологического оборудования ошибочные действия обслуживающего персонала
 - 6. Какое выражение отражает уравнение Гюн-Стодолы? Ответы:

```
\Delta S = -T0 - \Delta E
T = \Delta E / \Delta S
Q = \Delta E + \Delta S
\Delta E = -T0 \Delta S \le 0
```

7. Какая величина является предельной для эксергетической тепловой функции в процессе передачи теплоты от источника в окружающую среду, когда температура источника растет? Ответы:

100

10

1

0

8. При прочих равных условиях потери эксергии при теплопередаче больше для схемы: Ответы:

противотока

+прямотока

смешенного тока

перекрестного тока

9. Из каких компонентов состоят газообразные продукты полного сгорания топлива при коэффициенте избытка воздуха больше единицы ? Ответы:

```
CO, H2, CH4, SO2, N2
CO2, H2 O, SO2, N2, O2
CO2, CO, H2O, H2, SO2
O2, CO2, H2 O, C2 H6, H2
```

10. Эксергетический баланс системы или отдельного элемента системы записывается так: Ответы:

$$\Sigma$$
 Ebx, $i = \Sigma$ Ebhx, $i + \Sigma$ Εποτ, $i + \Delta$ Ev

$$\Sigma$$
 E_Bωx, $i = \Sigma$ E_Bx, $i + \Sigma$ Eποτ, $i + \Delta$ Ev

$$\Delta$$
 Ev = Σ E_Bωx, $i + Σ$ E_Bx, $i + Σ$ Eποτ, i

$$\Sigma$$
 Евых. + Σ Евх, $i=\Sigma$ Епот, $i+\Delta$ Ev

11. Какие элементы органического топлива составляют горючую его массу? Ответы:

C, H, O, N, S A, H, O, N, S W, A, C, O, H, S N, C, W, H, O

12. Какие компоненты, содержащиеся в газообразных продуктах сгорания топлива представляют наибольшую опасность как загрязнители окружающей среды? Ответы:

водяной пар и диоксид углерода оксиды азота и оксиды серы углеводороды метилмеркаптан и бутан

- 13. Какой элемент отсутствует в газотурбинной установке? Ответы: компрессор камера сгорания пароперегреватель горелочное устройство
- 14. Что является главной движущей силой циркуляции воды в экранных поверхностях нагрева котлов с естественной циркуляцией? Ответы: разность гидростатических напоров в подъемных и опускных трубах контура циркуляции кинетическая энергия потока питательной воды наличие циркуляционного насоса различие площади поперечного сечения подъемных и опускных труб контура циркуляции
- 15. По какой формуле можно пересчитать расход любого топлива (В) на расход условного топлива (Вусл)? Ответы:

Bусл = B Qрн

Bусл = B Qусл

Bусл = B Qрн

Bycл = B QpH / Qycл

Вариант №2

1. Доля отопительно-вентиляционного потребления тепловой энергии на химических предприятиях от общего годового теплопотребления составляет в среднем: Ответы:

100 % 53 % 18 % 5 %

2. Что является основным источником первичной энергии в промышленных технологиях? Ответы:

ядерное топливо органическое топливо излучение солнца гидроэнергия

3. Эффективным способом снижения нагрузки на гидросферу является : Ответы:

использование артерзианской воды изменение структуры водопотребления использование оборотных систем водоснабжения использование опресненной морской воды

4. Какая из формул связывая тепловые потоки в выпарном аппарате отвечает первому закону термодинамики? Ответы:

Овход = Овыход + ОпотерьQвыход = Qвход + Qпотерь

Qпотерь = Qвход + Qвыход

Овход = Опотерь

5. Как изменяется эксергия вещества с ростом его температуры? Ответы:

эксергия не изменяется

уменьшается

при высокой температуре приближается к эксергии окружающей среды увеличивается

6. Какое из выражений для эксергетического КПД является правильным? Ответы:

 $\eta e = \Sigma$ Sвхода / Σ Sвыхода

 $\eta e = \Sigma$ Евыхода / Σ Евхода

 $\eta e = \Sigma$ Sвыхода / Σ Sвхода

 $\eta e = \Sigma$ Евхода / Σ Евыхода

7. Вторичные энергоресурсы могут использоваться: Ответы: в самом агрегате, откуда они выходят

частично или полностью для энергоснабжения других агрегатов как в агрегате, где они получены, так и в других агрегатах только вне пределов предприятия

- 8. Чему равна эксергия электроэнергии затраченной на привод компрессора? Ответы: величине затраченной электроэнергии величине затраченной электроэнергии за вычетом потерь в компрессоре мощности привода компрессора величине затраченной электроэнергии за вычетом потерь в приводе
- 9. Какой вид топлива характеризуется параметром выход летучих ? природный газ попутный нефтяной газ жидкое топливо твердое топливо
- 10. Как изменяется потеря эксергии в теплообменном аппарате с ростом расхода горячего теплоносителя при прочих равных условиях? Ответы: снижается увеличивается не изменяется увеличивается увеличивается увеличивается увеличивается, если площадь поверхности теплопередачи достаточно велика
- 11. Какое из приведенных выражений может быть уравнением теплового баланса энерготехнологического агрегата, использующего органическое топливо ? Ответы:

 Qрн + Qфиз.топл. + Qфиз.в-ха = Qполезн. + Qух.газ + Qст + Qхим.недож. + Qмех.недож.

 Qрв= Qполезн. + Qр н+ Qпотерь

 Qполез. = Qр в Qрн + Qух.газ + Qст + Qхим.недож.

 Qполезн. = Qфиз.топл. + Qфиз.в-ха + Qхим.недож.
- 12. Какие конструкции котлов исторически были первыми? Ответы: прямоточные водотрубные газотрубные емкостного типа
 - 13. Что такое низшая теплота сгорания топлива? Ответы:

теплота, выделяющая при горении единицы количества топлива при условии, что содержащиеся в дымовых газах водяные пары не конденсируются;

теплота выделяющаяся при сжигании топлива без учета его влажности; теплота выделяющаяся при сжигании влажного топлива;

теплоотводная способность топлива при которой еще возможно самостоятельное горение

- 14. Какой элемент может отсутствовать в котлах-утилизаторах? Ответы: барабан экономайзер топочная камера и горелочное устройство пароперегреватель
- 15. Каково значение КПД современных тепловых электростанций оснащенных конденсационными паровыми турбинами? Ответы: около $80\,\%$ не выше $40\,\%$ не выше $20\,\%$ около $60\,\%$

Вариант №3

- 1. Главным загрязнителем воздуха в России является: Ответы: черная металлургия химическая промышленность автомобильный транспорт тепловые электростанции
- 2. Величина потенциала энергосбережения в России составляет в % от внутреннего энергопотребления: Ответы:
- 10 %
- 30 %
- 50 %
- 80 %
- 90 %
- 3. Вторичные энергетические ресурсы (ВЭР) могут быть: Ответы: горючие, тепловые, избыточного давления гидравлические атмосферные энергетические

4. Доля тепловой энергии на хозяйственно-бытовое горячее водоснабжение на химических предприятиях от общего годового теплопотребления составляет в среднем : Ответы:

100 %

53 %

18 %

5 %

- 5. От каких параметров зависит термическая эксергия вещества с постоянной температурой? Ответы: от температуры окружающей среды от компонентного состава окружающей среды от фазового состояния и наличия фазовых переходов в окружающей среде от теплоемкости вещества окружающей среды
- 6. Равновесные (обратимые) процессы передачи тепла от одного вещества другому: Ответы: протекают в аппаратах с интенсифицированным теплообменом протекают при температурах близких к температуре окружающей среды протекают при постоянной температуре одного из теплоносителей являются научной абстракцией и в технических устройствах не встречаются
- 7. В смесительных теплообменниках потери эксергии минимальны: Ответы: когда расходы смешивающихся теплоносителей равны когда теплоемкости смешивающихся теплоносителей равны когда расходы смешивающихся теплоносителей обратно пропорциональны их температурам когда расход холодного теплоносителя минимален
- 8. Потери эксергии в теплообменном аппарате тем больше, чем: Ответы: больше теплоемкость теплоносителей больше температура горячего теплоносителя больше разность температур теплоносителей больше плотность теплового потока
- 9. При изменении температуры вещества от Т0 до Т и постоянном давлении его удельная физическая эксергия изменяется на величину: Ответы:

$$\Delta 1 T = 1 T - 1 TO = \Delta S [T-T0 ln T / T0]$$

 $\Delta 1T = C p [\Delta S - T ln T / T]$
 $\Delta 1T = C p [T0 - T ln T / T]$
 $\Delta 1T = C p [T-T0]$

- 10. Какое свойство топлива зависит от выхода летучих? Ответы: способность топлива к зажиганию и стабильному горению температура горения теплота сгорания способность получения шлака в жидком состоянии
- 11. При каких условиях возможно горение газообразного топлива? Ответы:

коэффициент избытка воздуха должен быть больше единицы; концентрация топлива в воздухе должна быть выше нижнего концентрационного предела и ниже верхнего концентрационного пределе, а температура топливно-воздушной смеси должна быть выше температуры самовоспламенения;

теплота сгорания топлива не должна быть меньше 1 МДж/м3; теплота сгорания топлива не должна быть меньше 57 МДж/м3

- 12. Что такое высшая теплота сгорания топлива? Ответы: теплота сгорания при коэффициенте избытка воздуха равном единице; теплота включающая не только теплотворную способность единицы количества топлива, но и теплоту полной конденсации водяных паров, содержащихся в дымовых газах; теплота сгорания при коэффициенте избытка воздуха больше единицы; теплота сгорания топлива в среде кислорода
- 13. В каком элементе котла передается наибольшее количество тепла от продуктов сгорания топлива? Ответы:
- в барабане котла
- в экономайзере
- в воздухоподогревателе
- в экранных поверхностях
- 14. Турбиной называется лопаточный двигатель, в котором: Ответы: кинетическая энергия струи рабочего тела преобразуется в механическую энергию вращения ротора; рабочее тело нагревается; вырабатывается перегретый водяной пар; сжигается газообразное топливо

15. Как соотносятся между собой температуры пара и котловой воды в верхнем барабане котла? Ответы:

температура пара выше температуры воды температура воды выше температуры пара температуры одинаковы температура пара ниже температуры воды на величину депрессии

Вариант №4

1. Суть энерготехнологических схем производства продукции состоит: Ответы:

в совместном производстве продуктов и энергии в снижении затрат энергии в исключении потребления энергии от внешних источников в ресурсосбережении

- 2. Вода и водяной пар как греющие теплоносители используются обычно при температурах не выше 180 0С что обусловлено: Ответы: отсутствием необходимости в более высоких температурах перегревом продукта при более высоких температурах перегревом продукта при более высоких температурах невозможностью получить воду и пар с более высокой температурой необходимостью устройства массивных и тяжелых теплообменников
- 3. Во сколько раз экономически выгоднее снижать энергозатратность производства по отношению к созданию новых источников энергии? Ответы:

до 2-х раз

в 3-5 раз

в 5-7 раз

в 7-9 раз

4. С помощью какого параметра в термодинамическом анализе оценивается "качество" тепловой энергии? Ответы: тепловой поток удельный тепловой поток коэффициент теплообмена эксергия

5. При изменении давления газа от P0 до P его удельная механическая эксергия изменяется на величину: Ответы:

$$\Delta lp = lp - lpo = \Delta S Cp ln P/Po$$

$$\Delta lp = lp - lpo = Cp To ln P/ Po$$

 $\Delta lp = R To ln P/ Po$
 $\Delta lp = R \Delta S ln P/ Po$

6. Группа тепловых вторичных энергетических ресурсов (ВЭР) содержит : Ответы:

физическое тепло технологической основной и побочной продукции, а также вспомогательных потоков, участвующих в технологии; химическую энергию горючих отходов производства; потенциальную энергию давления выходящих потоков; кинетическую энергию выходящих газовых струй

7. Потери эксергии в теплообменном аппарате тем меньше, чем: Ответы:

меньше температура холодного теплоносителя меньше площадь поверхности теплопередачи +меньше разность температур теплоносителей меньше теплоемкость горячего теплоносителя

- 8. Чему равно численное значение удельной эксергии окружающей среды, имеющей температуру плюс 20 0С: Ответы:
- 20 Дж/кг
- 20 КДж/кг
- 0 Дж/кг
- 84 КДж/кг
- 9. Что определяет величина коэффициента избытка воздуха при сжигании топлива?

Ответы:

отношение количества воздуха к количеству топлива подаваемых в топку; отношение количества воздуха на входе в топку к количеству продуктов сгорания на выходе из топки;

отношение количества подаваемого в топку воздуха к теоретически необходимому по реакциям горения;

отношения количества воздуха необходимого по стехиометрии реакций к действительно подаваемому в топку

10. Термодинамическую эффективность процессов тепло- и массообмена целесообразно повышать за счет: Ответы: увеличения коэффициентов теплопередачи и массопередачи увеличения движущей силы процессов (ΔT и Δ у) понижения гидравлического сопротивления движению теплоносителей уменьшения площади контакта взаимодействующих потоков

11. Чему равна теплота сгорания условного топлива? Ответы:

10 МДж/кг 100 МДж/кг 159,78 МДж/кг

29,35 МДж/кг

12.Скорость горения жидкого топлива определяется: Ответы: скоростью его испарения

величиной теплоты сгорания теоретической температурой горения

коэффициентом избытка воздуха

13. На теплоэлектроцентралях устанавливаются паровые турбины:

Ответы:

конденсационного типа

- с произвольным числом оборотов вала
- с противодавлением
- с регулируемым, переменным числом оборотов вала

14. Что является рабочим телом в газовой турбине? Ответы:

водяной пар

продукты сгорания топлива

воздух

природный газ

15. Какой элемент отсутствует в водогрейных котлах? Ответы:

воздухоподогреватель экономайзер экранные поверхности пароперегреватель

Вопросы к экзамену

- 1. Энергетические ресурсы и их использование.
- 2. Актуальность и потенциал энергосбережения в стране.
- 3. Ресурсосбережение в сфере материального производства.
- 4. Взаимосвязь технологических, энергетических и экологических аспектов в промышленных технологиях.
- 5. Использование тепловой энергии в нефтегазовых технологиях.
- 6. Основные направления энерго- и ресурсосбережения в нефтегазовых технологиях.
- 7. Первый закон термодинамики. Энергетический баланс.

- 8. Второй закон термодинамики. Обратимые и необратимые процессы.
- 9. Эксергия. Эксергетическая тепловая функция. Уравнение Гюи- Стодолы. Эксергетический КПД.
- 10.Виды эксергии и их расчет.
- 11. Эксергетический баланс. Диаграммы потоков энергии и эксергии.
- 12. Топливо: его виды; основные характеристики.
- 13. Теплота сгорания топлива и ее расчет.
- 14. Материальный баланс процесса горения топлива.
- 15. Механизм горения газового топлива.
- 16.Особенности сжигания жидкого и твердого топлива и газофазных отходов.
- 17. Форсунки для сжигания жидкого топлива.
- 18. Топки для сжигания твердого топлива.
- 19. Расчеты процессов горения топлива.
- 20. Горелки и топочные устройства для сжигания газового топлива и газофазных отходов.
- 21.Паро- и теплогенераторы.
- 22. Процессы, протекающие в котлоагрегате.
- 23. Тепловой баланс и КПД котлоагрегата. Определение расхода топлива на котлоагрегат.
- 24. Парогенераторы, работающие на воде.
- 25. Парогенераторы, работающие на высокотемпературных органических теплоносителях.
- 26. Теплогенераторы, работающие на высокотемпературных жидких теплоносителях.
- 27. Котлы утилизаторы: конструкции и работа.
- 28.Паровые турбины.
- 29. Газовые турбины.
- 30. Энерготехнологический принцип организации промышленных технологических процессов.
- 31. Эксергетический анализ процессов сжатия газов.
- 32. Эксергетический анализ процессов расширения газов.
- 33. Анализ и термодинамическая оптимизация промышленных теплотехнологических систем.
- 34. Анализ и термодинамическая оптимизация нефтегазовых технологических систем.
- 35.Вторичные энергетические ресурсы в нефтегазовых технологиях.
- 36.Использование низкотемпературных вторичных энергоресурсов.
- 37. Энерготехнологическое комбинирование в промышленных технологиях.
- 38. Нормирование расходования энергоресурсов в промышленных технологиях.
- 39. Транспортные системы для газового органического топлива.

40. Транспортные системы для нефти и жидкого органического топлива.

14. Образовательные технологии

В рамках учебного курса предусмотрено чтение проблемных лекций по теме «Виды и способы получения, преобразования и использования энергии». Не менее 20% лекций по всем темам читаются с применением мультимедийных технологий. Проведение практикумов с разбором конкретных ситуаций по теме «Управление энергоснабжением и энергопотреблением на промышленном предприятии». Такие занятия, в сочетании с внеаудиторной сомостоятельной работой, должны формировать и развивать профессиональные навыки обучающегося.

Для достижения планируемых результатов обучения используются различные образовательные технологии, в том числе:

– информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими.

Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации;

– личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента при экспресс - опросе, при выполнении домашних индивидуальных заданий, решении задач повышенной сложности, на еженедельных консультациях.

При организации учебных занятий используются активные и интерактивные методы обучения: диалог, беседа, работа в команде.

Внеаудиторная самостоятельная работа студентов проводится с использованием ресурсов сети Интернет и локальных сетевых ресурсов института.

15. Перечень учебно-методического обеспечения для обучающихся по дисциплине

1. Данилов О. Л. Энергосбережение в теплоэнергетике и теплотехнологиях : учебник для вузов/ Данилов О. Л. , Гаряев И. В. - Москва : Издательский дом МЭИ, 2017. - ISBN 978-5-383-01095-2. - Текст : электронный // ЭБС "Консультант студента": [сайт]. - URL: https://www.studentlibrary.ru/book/ISBN9785383010952.html.

- 2. Кузнецова И.В. Энергосбережение в теплоэнергетике и теплотехнологиях : учебное пособие / Кузнецова И.В., Гильмутдинов И.И.. Казань : Казанский национальный исследовательский технологический университет, 2017. 125 с. ISBN 978-5-7882-2125-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/79603.html .
- 3. Липин А. А. Расчет теплообменных аппаратов. Кожухотрубчатые теплообменники: учеб. пособие / Липин А. А. Иваново: Иван. гос. хим. технол. ун-т., 2017. 76 с. ISBN -. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ghtu_003.html.
- 4. Кудинов, А. А. Энергосбережение в теплоэнергетике и теплотехнологиях. / Кудинов А. А. , Зиганшина С. К. Москва : Машиностроение, 2011. 117 с. ISBN 978-5-94275-558-4. Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785942755584.html.
- 5. Байтасов, Р. Р. Основы энергосбережения : учебное пособие для вузов / Р. Р. Байтасов. 2-е изд., стер. Санкт-Петербург : Лань, 2021. 188 с. ISBN 978-5-8114-8789-9. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/180865.
- 6. Ганжа В.Л. Основы эффективного использования энергоресурсов. Теория и практика энергосбережения : монография / Ганжа В.Л.. Минск : Белорусская наука, 2007. 451 с. ISBN 978-985-08-0810-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/12310.html.
- 7. Данилов, О. Л. Энергосбережение в теплоэнергетике и теплотехнологиях : учебник для вузов/ Данилов О. Л. , Гаряев И. В. Москва : Издательский дом МЭИ, 2017. ISBN 978-5-383-01095-2. Текст : электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785383010952.html.

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стула; рабочее место преподавателя; доска для написания фломастером; проектор BENQ 631, рулонный проекционный экран, ноутбук с подключением к сети с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Учебная аудитория для проведения занятий практического типа, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стула; рабочее место преподавателя; доска для написания фломастером; проектор BENQ 631, рулонный проекционный экран, ноутбук с подключением к сети с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Рабочую программу составил

(Ю.Я. Печенегов)

17. Дополнения и изменения в рабочей программе

Рабоч	ная программа г	пересмотрена	на заседании	кафедры		
« <u></u>		20 года, п	ротокол №			
	Зав. кафедро	й	/	/		
	Внесенные изменения утверждены на заседании УМКН					
	«»	20 г	ода, протокол	• 1,11111		
	Председател	ь УМКН	/	/		