Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Естественные и математические науки»

РАБОЧАЯ ПРОГРАММА

по дисциплине Б.1.2.19 «Анализ временных рядов»

направления подготовки 09.03.04 "Программная инженерия" профиль "Управление разработкой программных проектов"

форма обучения – очная курс – 3 семестр – 5 зачетных единиц – 4 часов в неделю – 4 всего часов –144, в том числе: лекции -32 практические занятия – 32 лабораторные занятия – нет самостоятельная работа – 80 зачет – нет экзамен – 5 семестр РГР – нет курсовая работа – нет курсовой проект – нет контрольная работа – нет

Рабочая программа обсуждена на заседании кафедры ЕМН «27» июня 2022 года, протокол № 9

Заведующий кафедрой ________ / Жилина Е.В./

Рабочая программа обсуждена на УМКН ИВЧТ «27» июня 2022 года, протокол № 5

Председатель УМКН

6. жилина Е.В./

Энгельс 2022

1. Цели и задачи дисциплины

<u>Ц</u>ель преподавания дисциплины: Целями освоения дисциплины «Анализ временных рядов» являются подготовка студентов к аналитическому и проектно-исследовательскому видам профессиональной деятельности.

Задачи изучения дисциплины:

- -изучение методов анализа количественных данных о процессах, которыми проявляет себя система (физическая, техническая, экономическая, социальная).
- -сбор и анализ информации, необходимой и достаточной для построения вероятностно-статистической модели процесса;
- -анализ данных о процессе для соотнесения его к определённому виду (аппроксимация) или типу (принятие гипотезы) общепринятых статистических моделей;
- -аппроксимационный (дисперсионный, регрессионный, факторный) анализ данных о процессе для построения статистической модели наблюдаемого явления с целью выявления трендов и построения прогноза о поведении исследуемой системы;
- использование математических приложений статистики Microsoft Office Excel, технологий VBA (Visual Basic for Applications) или VB, системы MatLab для решения практических задач с использованием перечисленных методов.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Анализ временных рядов» относится к вариативной части блока 1 учебного плана основной профессиональной образовательной программы подготовки бакалавров по направлению 09.03.04 «Программная инженерия».

Требования к «входным» знаниям, умениям и компетенциям обучающегося, необходимым при освоении дисциплины «Анализ временных рядов» - для успешного изучения курса необходимо владеть основами математического анализа, теории вероятностей и математической статистики, методами объектно-ориентированного программирования.

3. Требования к результатам освоения дисциплины

Студент должен получить теоретическую подготовку в области математического моделирования, обработки данных на ЭВМ и приобрести практические навыки по обработке экспериментальных данных с использованием пакетов приложений математических и систем программирования – Excel 2007 и выше, VBA MS Office, MatLab.

Сюда включается создание средств численного анализа экспериментальных или моделируемых данных с точки зрения идентификации их статистических и (или) детерминированных моделей.

Изучение дисциплины направлено на формирование следующих компетенций:

ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности.

Студент должен:

Знать: основные понятия математической статистики, методы сбора и анализа числовых данных для реконструкции статистических моделей исследуемых процессов; быть информированным о современных системах и пакетах анализа экспериментальных данных.

Уметь: применять законы математической статистики и математические методы (аналитические и численные) для анализа данных измерений или наблюдений явлений и процессов; работать с компьютером как средством управления информацией, работать с информацией из различных источников, в том числе в глобальных компьютерных сетях; уметь применять на практике ИТ-сервисы по обработке данных.

Владеть: программными средствами и Интернет-ресурсами для обработки экспериментальных данных временного аргумента, встроенным в офисные приложения программным обеспечением, предназначенным для обработки данных и их визуализации; использовать соответствующий математический аппарат и инструментальные средства для обработки, анализа, систематизации информации и построения математических моделей трендов временных процессов.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции (составляющей компентенции)
(результат освоения)	
ОПК-1. Способен применять	ИД-1 _{ОПК-1} Знает основы математики, физики,
естественнонаучные и	вычислительной техники и программирования.
общеинженерные знания,	ИД-2 _{ОПК-1} Умеет решать стандартные
методы математического	профессиональные задачи с применением
анализа и моделирования,	естественнонаучных и обще-инженерных знаний,
теоретического и	методов математического анализа и моделирования.
экспериментального	ИД-3 _{опк-1} Имеет навыки теоретического и
исследования в	экспериментального исследования объектов
профессиональной	профессиональной деятельности.
деятельности	

	T 1		
Код и наименование	Наименование показателя оценивания		
индикатора достижения	(результата обучения по дисциплине)		
компетенции			
ИД-1 _{опк-1} Знает основы	Знает:		
математики, физики,	- основные понятия математической статистики,		
вычислительной техники и	методы сбора и анализа числовых данных для		
программирования.	реконструкции статистических моделей исследуемых		
	процессов;		
	- возможности современных систем и пакетов анализа		
	экспериментальных данных.		
ИД-2 _{опк-1} Умеет решать	Умеет:		
стандартные	- решать стандартные задачи исследования свойств		
профессиональные задачи с	временных рядов с применением естественнонаучных		
применением	и общеинженерных знаний, методов математического		
естественнонаучных и обще-	анализа и моделирования.		
инженерных знаний, методов	- иметь навыки теоретического и экспериментального		
математического анализа и	исследования объектов профессиональной		
моделирования.	деятельности, ассоцируемых с временными рядами;		
	- применять законы математической статистики и		
	математические методы Фурье - анализа		
	(аналитические и численные) данных измерений или		
	наблюдений процессов и явлений;		
	- работать с компьютером как средством управления		
	информацией,		
	- работать с информацией из различных источников, в		
	том числе в глобальных компьютерных сетях;		
	- применять на практике ИТ-сервисы по обработке		
	данных.		
	Владеет:		
	-программными средствами и Интернет-ресурсами		
	для обработки экспериментальных данных		
ИД-З _{опк-1} Имеет навыки	временного аргумента,		
теоретического и	- встроенным в офисные приложения программным		
экспериментального	обеспечением. предназначенным для обработки		
исследования объектов	данных и их визуализации;		
профессиональной	- использовать соответствующий математический		
деятельности.	аппарат и инструментальные средства для		
	структурирования, обработки, анализа,		
	систематизации данных и построения		
	математических моделей трендов временных		
	процессов.		

4. Объем дисциплины и виды учебной работы

iv o o being grieding in bright y reducti parotible			
		акад.часов	
Вид учебной деятельности	Всего	по семестрам	
		5 сем.	
1. Аудиторные занятия, часов всего, в том числе:	64	64	
• занятия лекционного типа,	32	32	
• занятия семинарского типа:	-	-	
практические занятия	32	32	

лабораторные занятия	-	-
в том числе занятия в форме практической подготовки	-	-
2. Самостоятельная работа студентов, всего	80	80
– курсовая работа (проект)	-	-
3.Промежуточная аттестация:		экзамен
экзамен, зачет с оценкой, зачет		
Объем дисциплины в зачетных единицах	4	4
Объем дисциплины в акад. часах	144	144

5. Содержание дисциплины, структурированное по темам с указанием количества академических часов и видов учебных занятий

5.1. Содержание дисциплины

Тема 1. <u>Визуализация результатов анализа экспериментальных данных процессов и временных рядов</u>

Построение графиков функций; Оформление графиков и графических окон – графика Microsoft Excel.

Графика системы MATLAB: высокоуровневая, дескрипторная, специальная, анимационная, трехмерная.

Тема 2. Полиномиальная аппроксимация: полином, обращенный полином, интерполяционный многочлен Лагранжа.

Тема 3. <u>Полиномиальная аппроксимация по МНК.</u>

Метод наименьших квадратов (линейная регрессия). Экспоненциальностепенная аппроксимация. Гармонический анализ.

Тема 4. Функции распределения и обратные функции распределения.

Одномерные распределения: непрерывные распределения, дискретные.

Равномерное распределение. Нормальное распределение. Плотность вероятности нормального распределения.

Распределения, связанные с нормальным.

Распределение хи – квадрат.

Распределение Релея. Генерация одномерных распределений.

Алгоритмы реализации, основанные на полиномах наилучшего приближения.

Тема 5. Теоретические и эмпирические распределения.

Описательная статистика: среднее значение, математическое ожидание, медиана, мода, дисперсия, среднее квадратичное отклонение, асимметрия, эксцесс, коэффициент вариации, минимум, максимум, размах выборки, моменты распределения.

Вариационная статистика: параметры классовых интервалов, группировка, функции эмпирического распределения.

Ранжирование: проверка случайности выборки из нормальной совокупности, репрезентативность выборки.

Критерии согласия. Уровень значимости. Критерий согласия Пирсона (χ^2 -критерий). Параметрические тесты: t- критерий Стьюдента, F- критерий. Проверка типа распределения эмпирических данных.

Простые и сложные гипотезы, критерии согласия, критерии отклонения распределения от нормальности. Вероятности ошибок I и II рода (α,β).

Тема 6. Статистики эмпирического ряда.

Описательная статистика. Вариационная статистика.

Параметры распределения.

Оценивание параметров распределения по выборке.

Методы оценивания:

а) оценивание параметров по конечной выборке.

б)оценивание по неограниченно растущей выборке.

Выборки из нормального распределения: большие выборки и приближенно нормальные оценки.

Оценка дисперсии распределения.

Т - критерий

F-критерий

Метод моментов (на примере нормального распределения).

Тема 7. Метод квантилей.

Оценка: состоятельная, несмещенная.

Эффективность оценок.

Доверительное оценивание. Доверительная область, доверительные пределы.

Оценка максимального правдоподобия

Логарифмическая функция правдоподобия

Графический анализ функции правдоподобия

Случай непрерывного параметра.

Двухмерная функция правдоподобия

Тема 8. Расширение понятия временного ряда.

Примеры временных рядов.

Виды временных рядов.

Цели анализа временных рядов.

Стадии анализа временных рядов:

Методы анализа временных рядов.

Корреляционный анализ.

Спектральный анализ

Сглаживание и фильтрация

Модели авторегрессии и скользящего среднего.

Детерминированная и случайная составляющая временного ряда.

Аддитивная и мультипликативная модели.

Способы описания детерминированных компонент

Простейшие модели тренда: линейная модель, полиномиальная, логарифмическая, логистическая, Гомперца.

Метод наименьших квадратов.

Удаление тренда с помощью разностных операторов.

Преобразование шкалы. Логарифмическое преобразование. Преобразование Бокса – Кокса.

Ряды, имеющие отрицательные значения.

Выделение сезонных эффектов. Удаление сезонной компоненты.

Метод скользящих средних (М.с.с.). Медианное сглаживание. Вычисления скользящего среднего. Свойство скользящего среднего. Прогнозирование.

5.2. Разделы, темы дисциплины и виды занятий

		Виды занятий, включая самостоятельную работу			
Nº		студентов (в акад.часах)			
п/п	Наименование раздела, темы	занятия	занятия	самос-	
11/11	дисциплины	лекционного	семинарского	тоятельная	
		типа	типа	работа	
1.	Тема 1. Визуализация	4	4	5	
	результатов анализа				
	экспериментальных данных				
	процессов и временных рядов				
2.	Тема 2. Полиномиальная	2	2	5	
	аппроксимация				
3.	Тема 3. Полиномиальная	6	6	5	
	аппроксимация по МНК.				
4.	Тема 4. Функции	2	2	5	
	распределения и обратные				
	функции распределения.				
5.	Тема 5. Теоретические и	2	2	5	
	эмпирические распределения.				
6.	Тема 6. Статистики	2	2	5	
	эмпирического ряда.				
7.	Тема 7. Метод квантилей.	2	2	5	
8.	Тема 8. Расширение понятия	8	8	45	
	временного ряда.				
	Итого: 144	32	32	80	

5.3. Перечень практических занятий

No	Наименование	Содержание практических занятий	Объем
п/п	раздела, темы		дисциплины
	дисциплины		в акад. часах
1.	Тема 1.	Оформление графиков и графических	4
	Визуализация	окон – графика Excel.	
	результатов анализа	Графика системы MATLAB:	
	экспериментальных	высокоуровневая, дескрипторная,	
	данных процессов и	специальная, анимационная, трехмерная.	
	временнЫх рядов		
2.	Тема 2.	Полиномиальная аппроксимация	2
	Полиномиальная		
	аппроксимация		
3.	Тема 3.	Метод наименьших квадратов (линейная	6
	Полиномиальная	регрессия).	

	аппроксимация по МНК.		
4.	Тема 4. Функции распределения и обратные функции распределения.	Генерация одномерных распределений. Равномерное распределение. Нормальное распределение. Плотность вероятности нормального распределения. Распределения, связанные с нормальным: распределение хи — квадрат. Распределение Релея.	2
5.	Тема 5. Теоретические и эмпирические распределения.	Критерии согласия. Уровень значимости. Критерий согласия Пирсона (χ^2 - критерий). Параметрические тесты: t-критерий Стьюдента, F- критерий. Проверка типа распределения эмпирических данных.	2
6.	Тема 6. Статистики эмпирического ряда.	Статистики эмпирического ряда. Параметры распределения. Оценивание параметров распределения по выборке. Оценка дисперсии распределения. Т – критерий. F-критерий. Метод моментов (на примере нормального распределения).	2
7.	Тема 7. Метод квантилей.	Логарифмическая функция правдоподобия Графический анализ функции правдоподобия Случай непрерывного параметра Двухмерная функция правдоподобия	2
8.	Тема 8. Расширение понятия временного ряда.	Простейшие модели тренда: логарифмическая, логистическая, Гомперца. Метод наименьших квадратов. Выделение сезонных эффектов. Удаление сезонной компоненты. Метод скользящих средних (М.с.с.) Вычисления скользящего среднего. Свойство скользящего среднего	8
	Итого		32

5.5. Задания для самостоятельной работы студентов

N₂	Наименование	Задания, вопросы, для	Объем
п/п	раздела, темы дисциплины	самостоятельного изучения (задания)	дисциплин ы в акад.
			часах
1.	Тема 1. Визуализация результатов анализа экспериментальных	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Статистические методы для обработки данных как библиотека встроенных функций в Microsoft	5

	данных процессов и временнЫх рядов	EXCEL 2. Сервисы пакета «STATISTIKA» 3. Сервисы пакета «SPSS» 4. Система программирования и моделирования «MATLAB»	
2.	Тема 2. Полиномиальная аппроксимация	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Полиномиальная аппроксимация	5
3.	Тема 3. Полиномиальная аппроксимация по МНК.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Метод наименьших квадратов (линейная регрессия)	5
4.	Тема 4. Функции распределения и обратные функции распределения.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Распределения, связанные с нормальным: распределение хи – квадрат. Распределение Релея.	5
5.	Тема 5. Теоретические и эмпирические распределения.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Описательная статистика: среднее значение, математическое ожидание, медиана, мода, дисперсия, среднее квадратичное отклонение, асимметрия, эксцесс, коэффициент вариации, минимум, максимум, размах выборки, моменты распределения. 2. Вариационная статистика: параметры классовых интервалов, группировка, функции эмпирического распределения. 3. Ранжирование: проверка случайности выборки из нормальной совокупности, репрезентативность выборки. 4. Критерии согласия. Уровень значимости. Критерий согласия Пирсона (5
6.	Тема 6. Статистики эмпирического ряда.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Описательная статистика. Вариационная статистика. 2. Параметры распределения. 3. Оценивание параметров распределения по выборке. 4. Методы оценивания: оценивание параметров по конечной выборке; оценивание по неограниченно	5

		растущей выборке	
7.	Тема 7. Метод квантилей.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Логарифмическая функция правдоподобия 2. Двухмерная функция правдоподобия	5
8.	Тема 8. Расширение понятия временного ряда.	Самостоятельно изучить основную и дополнительную литературу по теме. Подготовить ответы на контрольные вопросы: 1. Примеры временных рядов. 2. Виды временных рядов. 3. Цели анализа временных рядов. 4. Стадии анализа временных рядов : 5. Методы анализа временных рядов. 6. Корреляционный анализ. Спектральный анализ 7. Сглаживание и фильтрация 8. Модели авторегрессии и скользящего среднего. 9. Детерминированная и случайная составляющая временного ряда. 10. Аддитивная и мультипликативная модели. 11. Способы описания детерминированных компонент	45
	Итого		80

6. Расчетно-графическая работа

Расчетно-графическая работа не предусмотрена.

7. Курсовая работа

Курсовая работа не предусмотрена.

8. Курсовой проект

Курсовой проект не предусмотрен.

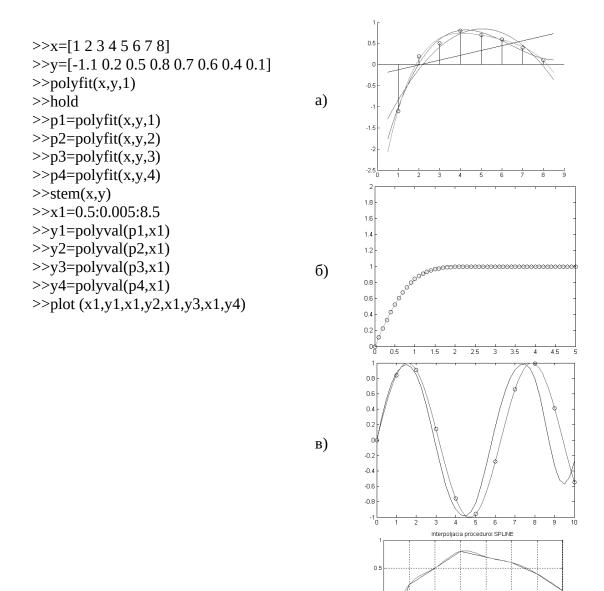
9. Контрольная работа

Контрольная работа не предусмотрена

10. Оценочные средства для проведения текущего контроля и промежуточной аттестации

Оценивание результатов обучения по дисциплине и уровня сформированности компетенций (части компетенции) осуществляется в рамках текущего контроля успеваемости и промежуточной аттестации в соответствии с Фондом оценочных средств.

Типовой перечень вопросов к зачёту:


Не предусмотрены

Типовой перечень вопросов к экзамену:

- 1. Графика системы MATLAB: высокоуровневая, дескрипторная, специальная, анимационная, трехмерная.
- 2. Полиномиальная аппроксимация: полином, обращенный полином, интерполяционный многочлен Лагранжа.
- 3. Метод наименьших квадратов (линейная регрессия). Гармонический анализ (на основе МНК).
- 4. Полиномиальная аппроксимация по МНК. Экспоненциально-степенная аппроксимация.
- 5. Планируемый эксперимент. Полный ортогональный план. Дробная реплика полного плана.
- 6. Функции распределения и обратные функции распределения.
- 7. Одномерные распределения: непрерывные распределения, дискретные.
- 8. Равномерное распределение. Нормальное распределение.
- 9. Плотность вероятности нормального распределения.
- 10. Распределения, связанные с нормальным. Распределение хи квадрат. Распределение Релея.
- 11. Генерация одномерных распределений. Алгоритмы реализации, основанные на полиномах наилучшего приближения.
- 12. Теоретические и эмпирические распределения.
- 13. Описательная статистика: среднее значение, математическое ожидание, медиана, мода, дисперсия, среднее квадратичное отклонение, асимметрия, эксцесс, коэффициент вариации, минимум, максимум, размах выборки, моменты распределения.
- 14. Вариационная статистика: параметры классовых интервалов, группировка, функции эмпирического распределения.
- 15. Ранжирование: проверка случайности выборки из нормальной совокупности, репрезентативность выборки.
- 16. Критерии согласия. Уровень значимости. Критерий согласия Пирсона (χ^2 критерий).Параметрические тесты: t- критерий Стьюдента, F- критерий.
- 17. Проверка типа распределения эмпирических данных.
- 18. Простые и сложные гипотезы, критерии согласия, критерии отклонения распределения от нормальности. Вероятности ошибок I и II рода (α , β).
- 19. Статистики эмпирического ряда:
- 20. Описательная статистика. Вариационная статистика.
- 21. Параметры распределения.
- 22. Оценивание параметров распределения по выборке.
- 23. Методы оценивания:а) оценивание параметров по конечной выборке.б)оценивание по неограниченно растущей выборке.
- 24. Выборки из нормального распределения: большие выборки и приближенно нормальные оценки.
- 25. Оценка дисперсии распределения. Т критерий F-критерий
- 26. Метод моментов (на примере нормального распределения).
- 27. Метод квантилей. Оценка: состоятельная, несмещенная. Эффективность оценок.
- 28. Доверительное оценивание. доверительная область, доверительные пределы.
- 29. Оценка максимального правдоподобияЛогарифмическая функция правдоподобия
- 30. Графический анализ функции правдоподобия. Случай непрерывного параметра
- 31. Двухмерная функция правдоподобия
- 32. Расширение понятия временного ряда. Примеры временных рядов. Виды временных рядов.
- 33. Цели анализа временных рядов. Стадии анализа временных рядов:
- 34. Методы анализа временных рядов. Корреляционный анализ. Спектральный анализ. Сглаживание и фильтрация

- 35. Модели авторегрессии и скользящего среднего. 36. Детерминированная и случайная составляющая временного ряда. Аддитивная и мультипликативная модели. Способы описания детерминированных компонент 37. Простейшие модели Тренда: линейная модель, полиномиальная: логарифмическая логистическая: Гомперца. 38. Метод наименьших квадратов. Удаление тренда с помощью разностных операторов. 39. Преобразование шкалы. Логарифмическое преобразование. Преобразование Бокса – Кокса.Ряды, имеющие отрицательные значения. 40. Выделение сезонных эффектов. Удаление сезонной компоненты. 41. Метод скользящих средних (М.с.с.) медианное сглаживание Вычисления скользящего среднего. Свойство скользящего среднего Типовые тестовые задания: 1. Измерение одной и той же величины в эксперименте, приводящие к получению набора данных, принято называть: □ Прямыми □ Однократными **П** Многократными 2. Величина, закономерно меняющаяся с течением времени вследствие процессов, происходящих в исследуемом объекте, называется: □ Постоянной □ Случайной □ Переменной ☐ Нестабильной 3. Вероятность попадания значения измеряемой величины в некоторый интервал значений именуется: □ Доверительной □ Нормальной □ Достоверной □ Суммарной 4. При малом количестве измерений для оценки «истинного» значения измеряемой величины необходимо учитывать коэффициент: □ Пирсона **□** Фишера ☐ Стьюдента □ Спирмена 5. Приведите в соответствие вида нелинейной зависимости виду получаемой в результате
- линеаризации линейной зависимости:
- $Y^{-1} = ax^{-1} + b$ 1. $Y=ax^b$ a. 2. $Y=ae^{bx}$ $Ln(Y) = bx^{-1} + Ln(a)$ б. $Y=ae^{b/x}$ $Ln(Y) = Ln(a) + b \cdot Ln(x)$ 3. в.
- Y=x/(a+bx)Ln(Y) = Ln(a) + b x4.

- 6. Вероятность отвергнуть нулевую гипотезу, когда она на самом деле верна, называется: \square Ошибкой I рода
 - ☐ Ошибкой II рода
 - **П** Промахом
 - □ Грубой погрешностью
- 7. Найдите соответствие между кодом и его графической интерпретацией в MatLab:

г)

Примеры вопросов для опроса:

- 1. Виды временных рядов.
- 2. Стадии анализа временных рядов.
- 3. Модель скользящего среднего.

- 4. Детерминированная и случайная составляющая временного ряда.
- 5. Удаление тренда с помощью разностных операторов.

Примеры тем групповых дискуссий:

Не предусмотрены

Тематика индивидуальных проектов:

Не предусмотрены

Тематика эссе

Не предусмотрены

Типовые задания для практических занятий

Вычисление $y=P(x)=P\{X<=x\}$, где X-нормально 1. распределенная

случайная величина с $\mu = 0$ и $\delta = 1$. $P(x) = \sqrt{2\pi} \int_{-\infty}^{+\infty} exp\left(-\frac{u^2}{2}\right) du$

При вычислениях использовать следующую аппроксимацию:

$$P(x)=1-f(x)^{\sum_{i=1}^{5}a_{i}w^{i}}, x>=0.$$
Где $w=\frac{1}{1+px}$, $f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}$

Где w=
$$\frac{1}{1+px}$$
, f(x)= $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}}$

$$a_1 = 0.3193815$$

$$a_2 = -0.3565638$$

$$a_3 = 1.781478$$

$$a_4 = -1.821256$$

$$a_5 = 1.330274$$

Максимальная ошибка аппроксимации равна $7*10^{-7}$

Указание: а) применять схему Горнера, б) при выходе из процедуры выдавить f(x)-плоскость(строить график).

2. Моделировать нормально распределенную случайную величину с заданным средним (M) и стандартным отклонением (S):

$$\frac{\sum_{i=1}^{\kappa} x_i - \frac{k}{2}}{\sqrt{k}}$$

 $\sum_{i=1}^{\kappa} x_i - \frac{k}{2}$ у= $\sqrt{\frac{k}{12}}$, где X_i -равномерно распределённое случайное число на $0 < X_i < 1$ если $K \to \infty$ если $K \to \infty$ если $K \to \infty$ если $K \to \infty$ у аппроксимирует точное нормальное распределение при к $\to \infty$ если к=12, то

$$\sum_{y=i=1}^{12} x_i - 6$$

Переход к требуемому среднему и стандартному отклонению осуществлять по формуле: $y^i = y * S + M$.

3. Генерировать 100,1000,10000 случайных величин с нормальным законом распределения и строить гистограмму.

Типовые задания для контрольной работы

Не предусмотрены

11. Учебно-методическое обеспечение дисциплины

11.1. Рекомендуемая литература

- 1. Нестеров С.А. Интеллектуальный анализ данных средствами MS SQL Server 2008: учебное пособие / Нестеров С.А.— М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2012. 189— с., http://www.iprbookshop.ru/16702
- 2. Федин Ф.О. Анализ данных. Часть 1. Подготовка данных к анализу: учебное пособие / Федин Ф.О., Федин Ф.Ф.— М.: Московский городской педагогический университет, 2012. 204— с., http://www.iprbookshop.ru/26444
- 3. Айзек М.П. Вычисления, графики и анализ данных в Excel 2010: самоучитель / Айзек М.П., Серогодский В.В., Финков М.В., Прокди Р.Г.— С.: Наука и Техника, 2013. 352— с., http://www.iprbookshop.ru/35392
- 4. Айзек М.П. Вычисления, графики и анализ данных в Excel 2013: самоучитель / Айзек М.П., Финков М.В., Прокди Р.Г.— С.: Наука и Техника, 2015. 416— с. http://www.iprbookshop.ru/35584
- 5. Боровиков В.П. Популярное введение в современный анализ данных в системе STATISTICA: учебное пособие / Боровиков В.П.— М.: Горячая линия Телеком, 2013. 290— с., http://www.iprbookshop.ru/37198
- 6. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере/ Под ред. В.Э.Фигурнова М.: ИНФРА М, 1998. 528 с
- 7. Боровиков В. STATISTIKA: Искусство анализа данных на компьютере. Для профессионалов. СПб.: Питер, 2001. 656 с.
- 8. Федин Ф.О. Анализ данных. Часть 2. Инструменты Data Mining: учебное пособие / Федин Ф.О., Федин Ф.Ф.— М.: Московский городской педагогический университет, 2012. 308— с. http://www.iprbookshop.ru/26445
- 9. Боровиков В.Программа STATISTIKA для студентов и инженеров. 2-е изд. М.: Компьютер Пресс, 2001. 301 с.
- 10. Гайдышев И. Анализ и обработка данных. Специальный справочник. СПб.: Питер, 2001. 752с.

11.3. Нормативно-правовые акты и иные правовые документы *Не используются*

11.4 Перечень электронно-образовательных ресурсов

- 1. Учебно-методические материалы по дисциплине «Анализ временных рядов» (электронный образовательный ресурс размещен в ИОС ЭТИ (филиал) СГТУ имени Гагарина Ю.А. http://techn.sstu.ru/new/SubjectFGOS/Default.aspx?kod=37)
- 2. Сайт ЭТИ (филиал) СГТУ имени Гагарина Ю.А. http://techn.sstu.ru/node.aspx?cd=136

11.5 Электронно-библиотечные системы

- 1. ЭБС «IPRbooks» https://www.iprbookshop.ru
- 2. ЭБС «Лань» https://e.lanbook.com

- 3. ЭБС «elibrary» https://elibrary.ru
- 4. ЭБС «КОНСУЛЬТАНТ СТУДЕНТА» https://www.studentlibrary.ru

11.6. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. https://openedu.ru Национальный проект открытого образования
- 2. https://demonstrations.wolfram.com Wolfram Demonstrations Project

11.7. Печатные и электронные образовательные ресурсы в формах, адаптированных для студентов с ограниченными возможностями здоровья (для групп и потоков с такими студентами)

1. Адаптированная версия ЭБС «Консультант студента», для использования инвалидами и лицами с ограниченными возможностями здоровья

Обучающиеся из числа инвалидов и лиц с ОВЗ обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

12. Информационно-справочные системы и профессиональные базы данных

Обучающимся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам.

12.1 Перечень информационно-справочных систем

1. Справочная правовая система «Консультант Плюс».

12.2 Перечень профессиональных баз данных

- 1. https://openedu.ru Национальный проект открытого образования
- 2. https://demonstrations.wolfram.com Wolfram Demonstrations Project

12.3 Программное обеспечение

Образовательный процесс по дисциплине обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства (подлежит обновлению при необходимости).

- 1) Лицензионное программное обеспечение операционная система Windows-7
- 2) Свободно распространяемое программное обеспечение пакет офисных приложений LibreOffice 7.4.0

Каждый обучающийся в течение всего периода обучения обеспечивается индивидуальным неограниченным доступом к электронно-

библиотечной системе и электронной информационно-образовательной среде.

13. Материально-техническое обеспечение

Образовательный процесс обеспечен учебными аудиториями для проведения учебных занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, помещениями для самостоятельной работы студентов.

Учебные аудитории оснащенны оборудованием и техническими средствами обучения, которые включают в себя учебную мебель, комплект мультимедийного оборудования, в том числе переносного (проектор, экран).

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А.

Рабочую про	грамму
составил	д.фм.н.,
профессор	

/Ю.В. Клинаев/

14. Дополнения и изменения в рабочей программе

Рабочая програмі	ма пересмотрена	і на заседании к	афедры
« <u> </u>	20 года, :	протокол №	
		_	
Зав. кафе,	лрой	/	/
Suzi nape,	——————————————————————————————————————		
Внесенные изменения ут	тверждены на за	седании УМКС	/УМКН
« <u> </u>	20	года, протокол	No
Председа	тель УМКН	/	/