## Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения

#### высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Оборудование и технологии обработки материалов»

#### РАБОЧАЯ ПРОГРАММА

по дисциплине

#### Б.1.2.14 «Теория механизмов и машин»

направления подготовки

15.03.02 «Технологические машины и оборудование»

Профиль 1: «Машины и аппараты пищевых производств»

форма обучения – очная курс - 2cemecтp - 3зачетных единиц – 4 часов в неделю – 4 всего часов – 144, в том числе: лекции – 32 практические занятия – 16 лабораторные занятия – 16 самостоятельная работа – 80 зачет - нет экзамен – 3 семестр  $P\Gamma P$  — нет курсовая работа – нет курсовой проект – нет

> > Энгельс 2022

#### 1. Цели и задачи дисциплины

Учебная дисциплина «Теория механизмов и машин» реализует требования федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.02 «Технологические машины и оборудование».

Теория механизмов и машин – научная дисциплина (или раздел науки), которая изучает строение (структуру), кинематику и динамику механизмов в связи с их анализом и синтезом.

Целью преподавания дисциплины «Теория механизмов и машин» является формирование базы знаний, умений и навыков исследования обучающихся по освоению физических основ, основных законов и расчетных соотношений теории механизмов и машин, определения и оценки их кинематических и динамических параметров для работы механических устройств при проектировании, изготовлении и эксплуатации машин.

Задачи изучения дисциплины:

- изучить структуру механизмов, кинематический и динамический анализ движения механизмов и машин в статике, кинематике и динамике;
- освоить основные методы расчета анализа и синтеза механизмов (скоростей, ускорений, сил) в статике, кинематике и динамике;
- освоить критерии работоспособности, что позволит обучающихся развить инженерное мышление, приучит к анализу методов решения и конструированию, и проектированию деталей механизмов и машин, грамотному оформлению технических расчетов и рабочих чертежей;
- уметь использовать полученные знания при конструировании деталей машин.

## 2. Место дисциплины в структуре ООП ВО

Дисциплина относится к блоку Б.1.2 Вариативная часть. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: математика, физика, начертательная геометрия, теоретическая механика.

Обучающийся должен знать:

- из курса высшей математики: векторная алгебра, функциональный анализ, прямая и плоскость, поверхности второго порядка, дифференциальное и интегральное вычисления, дифференциальные уравнения;
- из курса физики: способы задания движения точки, импульс силы, законы Ньютона, центр масс, динамика вращательного движения тела, работа и энергия, колебания точки;
- из курса начертательной геометрии: схематизация реальных конструкций, проецирование отрезка на координатные плоскости (метод двойного проецирования);

- из курса теоретической механики разделы статика, кинематика, динамика.

Успешное освоение дисциплины позволяет перейти к изучению следующих дисциплин: основы проектирования, метрология, стандартизация и сертификация, теплотехника, оборудование химических и нефтехимических производств, расчет и конструирование машин и аппаратов, ремонт и монтаж оборудования.

#### 3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование следующей компетенции:

- ПК-5: способность принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.

Студент должен знать: методы выполнения кинематических и геометрических расчетов; основы выбора материалов и методов их упрочнения, запасов прочности и допускаемых напряжений; расчет деталей машин в условиях статического и динамического нагружения; методику составления расчетных схем и определения действующих нагрузок;

Студент должен уметь: выбрать рациональный метод с помощью информационных систем расчета конкретной детали или узла;

Студент должен владеть: обеспечения единства и требуемой точности измерений для расчета и проектирования деталей и узлов в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования.

## 4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

| No | $N_{\underline{0}}$ | $N_{\underline{0}}$ |                                  |                              |       |      |      |      |     |
|----|---------------------|---------------------|----------------------------------|------------------------------|-------|------|------|------|-----|
| M  | Неде                |                     | Наименование                     | Часы/ Из них в интерактивной |       |      |      |      |     |
| o  | ЛИ                  | T                   | темы                             |                              | форме |      |      |      |     |
| ду |                     | e                   |                                  |                              | 1 1   |      |      |      |     |
| ЛЯ |                     | M                   |                                  |                              |       |      |      |      |     |
|    |                     | Ы                   |                                  |                              | Лек-  | Кол  | Лаб  | Пра  |     |
|    |                     |                     |                                  | Всего                        | ции   | лок- | opa- | К-   | CPC |
|    |                     |                     |                                  |                              |       | виу  | торн | тиче |     |
|    |                     |                     |                                  |                              |       | МЫ   | ые   | c-   |     |
|    |                     |                     |                                  |                              |       |      |      | кие  |     |
| 1  | 2                   | 3                   | 4                                | 5                            | 6     | 7    | 8    | 9    | 10  |
| 1  | 1                   | 1                   | Введение.                        | 14                           | 2     |      | 2    | 2    | 8   |
|    |                     |                     | Структурный анализ механизмов.   |                              |       |      |      |      |     |
| 1  | 2-3                 | 2                   | Кинематический анализ механизмов | 20                           | 4     |      | 4    | 4    | 8   |

|     |       |   | (рычажных, кулачковых, зубчатых).                       |     |    |    |    |    |
|-----|-------|---|---------------------------------------------------------|-----|----|----|----|----|
| 1   | 4     | 3 | Кинематический анализ и синтез                          | 14  | 2  | 2  | 2  | 8  |
|     |       |   | кулачковых механизмов.                                  |     |    |    |    |    |
| 1   | 5-6   | 4 | Кинематический анализ и синтез                          | 20  | 4  | 4  | 4  | 8  |
|     |       |   | зубчатых механизмов. Синтез                             |     |    |    |    |    |
|     |       |   | эвольвентного зубчатого зацепления.                     |     |    |    |    |    |
|     |       |   | Синтез многозвенных зубчатых                            |     |    |    |    |    |
|     |       |   | механизмов.                                             |     |    |    |    |    |
| 2   | 7-8   | 5 | Механизмы передач с гибкими                             | 20  | 4  | 2  |    | 14 |
|     |       |   | звеньями.                                               |     |    |    |    |    |
|     |       |   | Винтовые механизмы. Механизм                            |     |    |    |    |    |
|     |       |   | универсального шарнира.                                 |     |    |    |    |    |
|     |       |   | Механизм двойного универсального                        |     |    |    |    |    |
|     | 0.10  |   | шарнира.                                                | 1.0 | 1  |    | 2  | 10 |
| 2   | 9-10  | 6 | Механизмы фрикционных передач.                          | 16  | 4  |    | 2  | 10 |
|     |       |   | Мальтийский механизм.                                   |     |    |    |    |    |
|     |       |   | Гидравлические и пневматические                         |     |    |    |    |    |
| 3   | 11-12 | 7 | механизмы.                                              | 14  | 4  |    |    | 10 |
| 3   | 11-12 | ' | Динамический анализ механизмов.                         | 14  | 4  |    |    | 10 |
|     |       |   | Механическая характеристика машины. Движение механизмов |     |    |    |    |    |
|     |       |   | машины под действием приложенных                        |     |    |    |    |    |
|     |       |   | сил.                                                    |     |    |    |    |    |
| 3   | 13-14 | 8 | Трение в кинематических парах.                          | 12  | 4  | 2  |    | 6  |
|     | 13 11 |   | Виброзащита механизмов и машин.                         | 12  |    |    |    |    |
|     |       |   | Неравномерность хода машины.                            |     |    |    |    |    |
| 3   | 15-16 | 9 | Основные понятия теории машин-                          | 14  | 4  |    | 2  | 8  |
|     |       |   | автоматов. Циклограммы и                                |     |    |    |    |    |
|     |       |   | тактограммы машин.                                      |     |    |    |    |    |
| Bce | его   |   |                                                         | 144 | 32 | 16 | 16 | 80 |

## 5. Содержание лекционного курса

| No   | Всего | №      | Тема лекции. Вопросы, отрабатываемые на           | Учебно-      |
|------|-------|--------|---------------------------------------------------|--------------|
| темы | часов | лекции | лекции                                            | методическое |
|      |       |        |                                                   | обеспечение  |
| 1    | 2     | 3      | 4                                                 | 5            |
| 1    | 2     | 1      | Введение.                                         | [1-7,16,18]  |
|      |       |        | Структурный анализ механизмов.                    |              |
|      |       |        | Значение знания о теории механизмов и машин для   |              |
|      |       |        | подготовки квалифицированного бакалавра. История  |              |
|      |       |        | курса. Связь дисциплины с другими курсами. Цели и |              |
|      |       |        | задачи курса, Основные виды звеньев.              |              |
|      |       |        | Кинематические пары. Степень подвижности          |              |
|      |       |        | механизмов. Структурная классификация             |              |
|      |       |        | механизмов. Условия существования кривошипа.      |              |
|      |       |        | Модификация механизмов при замене пар.            |              |
| 2    | 4     | 2-3    | Кинематический анализ механизмов (рычажных,       | [1-12,16,18] |
|      |       |        | кулачковых, зубчатых).                            |              |
|      |       |        | План положений механизма. Масштабные              |              |

|   | 1 | 1     |                                                                                      |                 |
|---|---|-------|--------------------------------------------------------------------------------------|-----------------|
|   |   |       | коэффициенты. Определение скорости и ускорения                                       |                 |
|   |   |       | методом планов.                                                                      |                 |
|   |   |       | Кинематическое исследование механизмов                                               |                 |
|   |   |       | аналитическими методами. Кинематика шарнирного                                       |                 |
|   |   |       | четырехзвенника.                                                                     |                 |
|   |   |       | Кинематика кривошипно-ползунного механизма.                                          |                 |
|   |   |       | Кинематика кривошипно-кулисного механизма.                                           |                 |
| 3 | 2 | 4     | Кинематический анализ и синтез кулачковых                                            | [1-12,16,17,18] |
|   |   |       | механизмов.                                                                          |                 |
|   |   |       | Основные виды кулачковых механизмов.                                                 |                 |
|   |   |       | Определение минимального радиуса кулачка. Углы                                       |                 |
|   |   |       | давления.                                                                            |                 |
|   |   |       | Проектирование кулачкового механизма из условий                                      |                 |
|   |   |       | ограничения угла давления.                                                           |                 |
| 4 | 4 | 5-6   | Кинематический анализ и синтез зубчатых                                              | [1-12,16,17,18] |
|   |   |       | механизмов. Синтез многозвенных зубчатых                                             | [,,,            |
|   |   |       | механизмов.                                                                          |                 |
|   |   |       | Классификация зубчатых передач. Геометрические                                       |                 |
|   |   |       | элементы зубчатого колеса. Зубчатые механизмы с                                      |                 |
|   |   |       | неподвижными осями. Планетарные механизмы.                                           |                 |
|   |   |       | Дифференциальные механизмы.                                                          |                 |
|   |   |       | Синтез многозвенных зубчатых передач с                                               |                 |
|   |   |       | подвижными осями. Синтез многозвенных зубчатых                                       |                 |
|   |   |       | передач с неподвижными осями.                                                        |                 |
|   |   |       | Синтез эвольвентного зубчатого зацепления.                                           |                 |
|   |   |       | Образование и свойства эвольвенты. Основная                                          |                 |
|   |   |       | теорема зацепления. Элементы зацепления. Рабочий                                     |                 |
|   |   |       | участок профиля зуба. Коэффициент зацепления.                                        |                 |
|   |   |       | Интерференция профилей зубьев.                                                       |                 |
| 5 | 4 | 7-8   | Механизмы передач с гибкими звеньями.                                                | [1-12,16,17,18] |
|   | • | , 0   | Винтовые механизмы. Механизм универсального                                          | [1-12,10,17,10] |
|   |   |       | шарнира. Механизм двойного универсального                                            |                 |
|   |   |       | шарнира.                                                                             |                 |
|   |   |       | <b>Механизмы</b> передач с гибкими звеньями. Ременные                                |                 |
|   |   |       | передачи. Цепные передачи. Волновая передача.                                        |                 |
|   |   |       | Винтовые механизмы. Резьба, относительное                                            |                 |
|   |   |       | движение. Механизм универсального шарнира.                                           |                 |
|   |   |       | Механизм двойного универсального шарнира.                                            |                 |
|   |   |       | Кинематические схемы механизмов. Передаточное                                        |                 |
|   |   |       | отношение. Неравномерность хода.                                                     |                 |
| 6 | 4 | 9-10  | 1 1                                                                                  | [1-12,16,17,18] |
|   | • | 7-10  | Механизмы фрикционных передач. Мальтийский механизм. Гидравлические и пневматические | [1-12,10,17,16] |
|   |   |       | механизмы.                                                                           |                 |
|   |   |       | Механизмы. Механизмы фрикционных передач. Механизм                                   |                 |
|   |   |       | лобовой фрикционных передачи. Коническая и                                           |                 |
|   |   |       | цилиндрическая фрикционная передачи.                                                 |                 |
|   |   |       | Коэффициент относительного скольжения.                                               |                 |
|   |   |       | Мальтийский механизм. Механизмы бесступенчатых                                       |                 |
|   |   |       | передач. Гидравлические и пневматические                                             |                 |
|   |   |       | <u> </u>                                                                             |                 |
| 7 | 4 | 11-12 | механизмы. Гидро- и пневмопривод.                                                    | [1 12 16 17 10] |
| ' | • | 11-14 | Динамический анализ механизмов. Механическая                                         | [1-12,16,17,18] |
|   |   |       | характеристика машины.                                                               |                 |

|   | Т  | T     | I                                               |                 |
|---|----|-------|-------------------------------------------------|-----------------|
|   |    |       | Динамический анализ механизмов. Силы,           |                 |
|   |    |       | действующие на звенья механизмов. Определение   |                 |
|   |    |       | сил инерции звена.                              |                 |
|   |    |       | Механическая характеристика машины. Условия     |                 |
|   |    |       | статической определимости кинематических цепей. |                 |
|   |    |       | Движение механизмов машины под действием        |                 |
|   |    |       | приложенных сил. План силы. Приведение сил в    |                 |
|   |    |       | механизмах. Приведенная масса и приведенный     |                 |
|   |    |       | момент инерции. Кинетическая энергия механизма. |                 |
|   |    |       | Режим движения машины. Механический КПД. КПД    |                 |
|   |    |       | типовых механизмов. Неравномерность хода        |                 |
|   |    |       | машины при установившемся движении.             |                 |
|   |    |       | Балансировка роторов. Уравновешивание сил с     |                 |
|   |    |       | помощью противовесов и разгружающих устройств.  |                 |
|   |    |       | Исследование установившегося движения по        |                 |
|   |    |       | диаграмме энергомасс.                           |                 |
|   |    |       | Виброзащита механизмов и машин.                 |                 |
|   |    |       | Неравномерность хода машины.                    |                 |
|   |    |       | Уравновешивание вращающихся звеньев. Ударная и  |                 |
|   |    |       | вибрационная зашита машин. Снижение             |                 |
|   |    |       | виброактивности источников колебаний.           |                 |
|   |    |       | Виброгашение (активная виброизоляция).          |                 |
|   |    |       | Виброизоляция (пассивная виброизоляция).        |                 |
| 8 | 4  | 13-14 | Трение в кинематических парах. Трение в         | [1-12,16,17,18] |
|   |    |       | кинематических парах. Трение в поступательных   |                 |
|   |    |       | парах. Трение во вращательных кинематических    |                 |
|   |    |       | парах. Трение в высших кинематических парах.    |                 |
|   |    |       | Жидкостное трение.                              |                 |
| 9 | 4  | 15-16 | Основные понятия теории машин-автоматов.        | [1-12,16,17,18] |
|   |    |       | Циклограммы и тактограммы машин.                |                 |
|   |    |       | Основные понятия теории машин-автоматов. Основы |                 |
|   |    |       | теории роботов-манипуляторов. Структура         |                 |
|   |    |       | кинематических цепей роботов-манипуляторов.     |                 |
|   |    |       | Циклограммы и тактограммы технологических       |                 |
|   |    |       | машин (виды, примеры).                          |                 |
|   | 32 |       |                                                 |                 |

# **6. Содержание коллоквиумов** Коллоквиумы не предусмотрены

7. Перечень практических занятий

| №    | Всего | No      | Тема практического занятия. Задания, вопросы,                                                                                                                       | Учебно-      |
|------|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| темы | часов | занятия | отрабатываемые на практическом занятии                                                                                                                              | методическое |
|      |       |         |                                                                                                                                                                     | обеспечение  |
| 1    | 2     | 3       | 4                                                                                                                                                                   | 5            |
| 1    | 2     | 1       | Структурный анализ механизмов. Составление кинематических схем, структурный анализ механизмов. Подсчет степени свободы механизмов. Составление структурной формулы. | [1-5, 16,17] |
| 2    | 4     | 2-3     | Кинематический анализ механизмов рычажных, механизмов.                                                                                                              | [1-5, 16,17] |

|   |    |     | Кинематический анализ механизмов             |                           |  |  |  |
|---|----|-----|----------------------------------------------|---------------------------|--|--|--|
|   |    |     | графоаналитическими методами (метод планов   |                           |  |  |  |
|   |    |     | скоростей и ускорений, метод построения      |                           |  |  |  |
|   |    |     | кинематических диаграмм).                    |                           |  |  |  |
| 3 | 2  | 4   | Кинематический анализ и синтез кулачковых    | [1-5, 16,17]              |  |  |  |
|   |    |     | механизмов.                                  | , , <u>,</u>              |  |  |  |
|   |    |     | Профилирование плоских кулачков.             |                           |  |  |  |
|   |    |     | Профилирование пространственных кулачков.    |                           |  |  |  |
| 4 | 4  | 5-6 | Синтез зубчатых механизмов. Синтез           | [1-5, 16,17]              |  |  |  |
|   |    |     | эвольвентного зубчатого зацепления.          | [1 5, 10,17]              |  |  |  |
|   |    |     | Кинематический анализ зубчатых механизмов с  |                           |  |  |  |
|   |    |     | неподвижными осями. Кинематический анализ    |                           |  |  |  |
|   |    |     |                                              |                           |  |  |  |
|   |    |     | зубчатых механизмов с подвижными осями.      |                           |  |  |  |
|   |    |     | Построение картины внешнего эвольвентного    |                           |  |  |  |
|   |    | _   | зацепления                                   | 54 5 4 4 4 <del>5</del> 7 |  |  |  |
| 6 | 2  | 7   | Кинематический анализ мальтийского           | [1-5, 16,17]              |  |  |  |
|   |    |     | механизма. Построение заменяющего механизма. |                           |  |  |  |
|   |    |     | Кинематической схемы мальтийского механизма. |                           |  |  |  |
|   |    |     | Кинематический анализ с помощью построения   |                           |  |  |  |
|   |    |     | планов скоростей и ускорений.                |                           |  |  |  |
| 9 | 2  | 8   | Уравновешивание вращающихся звеньев.         | [1-5, 16,17]              |  |  |  |
|   |    |     | Построение плана сил. Динамический анализ    |                           |  |  |  |
|   |    |     | движения ротора.                             |                           |  |  |  |
|   | 16 |     | • •                                          |                           |  |  |  |

8. Перечень лабораторных работ

| №    | Всего | Наименование лабораторной работы. Задания, вопросы,    | Учебно-      |
|------|-------|--------------------------------------------------------|--------------|
| темы | часов | отрабатываемые на лабораторном занятии                 | методическое |
|      |       |                                                        | обеспечение  |
| 1    | 2     | Структурный анализ механизмов. Составление             | [17-19]      |
|      |       | кинематических схем и структурный анализ механизмов.   |              |
| 2    | 4     | Кинематический анализ механизмов рычажных              | [17-19]      |
|      |       | механизмов. Кинематический анализ кривошипно-          |              |
|      |       | ползунного механизма.                                  |              |
| 3    | 2     | Кинематический анализ механизмов кулачковых            | [17-19]      |
|      |       | механизмов. Кинематический анализ кулачкового          |              |
|      |       | механизма с плоским кулачком и коромыслом с роликом.   |              |
| 4    | 2     | Кинематический анализ зубчатых механизмов с            | [17-19]      |
|      |       | неподвижными осями. Составление кинематической         |              |
|      |       | схемы. Расчет передаточного отношения.                 |              |
| 4    | 2     | Кинематический анализ зубчатых механизмов с            | [17-19]      |
|      |       | подвижными осями (эпициклических). Составление         |              |
|      |       | кинематической схемы. Расчет передаточного отношения.  |              |
|      |       | Вычерчивание зубьев эвольвентного профиля методом      |              |
|      |       | обкатки. Изучение метода обкатки. Кинематика обработки |              |
|      |       | зубьев.                                                |              |
| 5    | 2     | Кинематический анализ универсального шарнира Гука.     | [17-19]      |
|      |       | Составление кинематической схемы. Расчет передаточного |              |
|      |       | отношения.                                             |              |
| 8    | 2     | Динамическая балансировка роторов. Балансировка        | [17-19]      |
|      |       | ротора с помощью двух противовесов. Составление плана  |              |

|  |    | сил. Расчет дисбаланса массы. |  |
|--|----|-------------------------------|--|
|  | 16 |                               |  |

## 9. Задания для самостоятельной работы студентов

Текущая самостоятельная работа студентов (СРС) по дисциплине «Теория механизмов и машин», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя следующие виды работ:

- работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по темам, вынесенным на самостоятельную проработку;
- подготовка к практическим занятиям, лабораторным работам и экзамену.

| № Всего Часов Задания, вопросы, для самостоятельного изучения (задания) |    | Учебно-<br>методическое<br>обеспечение                                                                                                                                                                                                                            |           |
|-------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1                                                                       | 2  | 3                                                                                                                                                                                                                                                                 | 4         |
| 1                                                                       | 8  | Влияние избыточных связей на работоспособность и надежность машин. Основная и местная подвижности. Наслоение структурных групп.                                                                                                                                   | [6-12,19] |
| 2                                                                       | 8  | Кинематические характеристики механизмов.<br>Клиновый механизм. Храповый механизм.                                                                                                                                                                                | [6-12,19] |
| 3                                                                       | 8  | Метод преобразования координат. Кинематический анализ и синтез конических пространственных кулачковых механизмов.                                                                                                                                                 | [6-12,19] |
| 4                                                                       | 8  | Расчет геометрии и сил в зубчатой передаче с наклонными зубьями. Расчет геометрии и сил в передаче коническими колесами. Расчет геометрии и сил в червячной передаче. Построение конструктивных элементов профилей зубьев на основе расчета эвольвентной функции. | [6-12,19] |
| 5                                                                       | 14 | Расчет сил для перемещения клинчатого ползуна винтовой парой. Расчет сопротивления перемещению тележки по наклонному пути.                                                                                                                                        | [6-12,19] |
| 6                                                                       | 10 | Волновые передачи. Механизмы Чебышева.                                                                                                                                                                                                                            | [6-12,19] |
| 7                                                                       | 10 | Приведение масс, сил и моментов сил для построения динамической модели машины. Приведение многомассовой системы к двухмассовой.                                                                                                                                   | [6-12,19] |
| 8                                                                       | 6  | Балансировка роторов. Расчет сил от неуравновешенности ротора.                                                                                                                                                                                                    | [6-12,19] |
| 9                                                                       | 8  | Расчет и программирование движений позиционирования манипуляторов по заданной траектории.                                                                                                                                                                         | [6-12,19] |
|                                                                         | 80 |                                                                                                                                                                                                                                                                   |           |

Выполнение СРС контролируется еженедельно на практических и лабораторных занятиях выборочным устным и общим кратким письменным опросами.

### 10. Расчетно-графическая работа

Не предусмотрена учебным планом.

### 11. Курсовая работа

Не предусмотрена учебным планом.

### 12. Курсовой проект

Не предусмотрен учебным планом.

## 13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Степень сформированности у студента компетенций, предусмотренных учебным планом, оценивается преподавателем на всех этапах учебного процесса как в результате наблюдения за его работой в аудиториях (лабораториях), так и по результатам выполнения индивидуальных заданий. Описание критериев и шкалы оценивания дано в следующих таблицах:

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины «Теория механизмов и машин» должна быть сформирована компетенция ПК-5.

## Уровни освоения компетенции

| Индекс | Формулировка:                                         |  |  |  |  |
|--------|-------------------------------------------------------|--|--|--|--|
| ПК-5   | способность принимать участие в работах по расчету и  |  |  |  |  |
|        | проектированию деталей и узлов машиностроительных     |  |  |  |  |
|        | конструкций в соответствии с техническими заданиями и |  |  |  |  |
|        | использованием стандартных средств автоматизации      |  |  |  |  |
|        | проектирования                                        |  |  |  |  |

| Ступени уровней      | Отличительные признаки  | Технологии     | Средства и        |
|----------------------|-------------------------|----------------|-------------------|
| освоения компетенции |                         | формирования   | технологии оценки |
| Пороговый            | Знает: основные         | Лекции,        | Практические и    |
| (удовлетворительный) | закономерности          | лабораторные и | лабораторные      |
|                      | изменения               | практические   | работы выполнены  |
|                      | кинематических и        | занятия        | с небольшими      |
|                      | динамических параметров |                | замечаниями,      |
|                      | звеньев механизмов и    |                | имелись           |
|                      | машин;                  |                | затруднения при   |
|                      | Умеет: делать обобщения |                | ответе на         |
|                      | о свойствах механизмов  |                | дополнительные    |
|                      | различных видов;        |                | вопросы;          |
|                      | прогнозировать          |                | не менее 60%      |
|                      | ожидаемые результаты    |                | правильных        |
|                      | при анализе и синтезе   |                | ответов при       |

механизмов; применять полученные знания для изучения технических систем, применяемых при эксплуатации технологических объектов нефтегазового производства; выполнять аналитических графоаналитических расчеты при определении кинематических динамических параметров механизмов; использовать полученные теоретические знания при специальных освоении дисциплин нефтегазового направления; Владеет: способами решения основных задач теории механизмов использования машин, основных аксиом теорем теории механизмов и машин в решении проектноконструкторских производственных задач; методами расчета, проектирования механизмов машин; методикой выбора многовариантных решений, проектных воплощение их в рабочих чертежах, приобщается к инженерному творчеству, осваивает предшествующий учится предвидеть новые идеи В создании механизмов И машин, надежных и долговечных, экономичных изготовлении эксплуатации, удобных и безопасных обслуживании; использует источники информации, справочную литературу и применяет

выполнении тестовых заданий; не вполне законченные выводы в ответе на вопросы на экзамене.

|                      | их в практической работе, понимает и использует результативные материалы для целей нефтеразведки и нефтедобычи.                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Продвинутый (хорошо) | Знает: структуру механизмов, кинематический и динамический анализ движения механизмов и машин в статике, кинематике и динамике; основные методы расчета анализа и синтеза механизмов (скоростей, ускорений, сил) в статике, кинематике и динамике; Умеет: использовать полученные знания при конструировании деталей машин; Владеет: критериями работоспособности механизмов и машин; анализом методов решения и конструирования и проектирования деталей  | Практические и лабораторные работы выполнены с небольшими замечаниями, имелись небольшие неточности при ответе на дополнительные вопросы; не менее 75% правильных ответов при выполнении тестовых заданий; имеются негрубые ошибки или неточности при ответе на вопросы на экзамене.          |
| Высокий (отлично)    | механизмов и машин.  Знает: принципы исследования свойств механизмов и машин; пути и направления исследования свойств механизмов и машин; использовать источники информации, справочную литературу и применять их в практической работе; понимать и использовать результативные материалы для целей нефтеразведки и нефтедобычи; Умеет: применять полученные знания для изучения технических систем, применяемых при эксплуатации технологических объектов | Практические и лабораторные работы выполнены без замечаний, студент свободно отвечает на дополнительные вопросы; не менее 90% правильных ответов при выполнении тестовых заданий; студент умеет оперировать специальными терминами, использует в ответе дополнительный материал, иллюстрирует |

| нефтегазового           | теоретические |    |
|-------------------------|---------------|----|
| производства; выполнять | положения     |    |
| аналитические и         | практическими |    |
| графоаналитические      | примерами     |    |
| расчеты при определении | при ответе    | на |
| кинематических и        | вопросы       | на |
| динамических параметров | экзамене.     |    |
| механизмов;             |               |    |
| Владеет: способами      |               |    |
| решения основных задач  |               |    |
| теории механизмов и     |               |    |
| машин, использования    |               |    |
| основных аксиом и       |               |    |
| теорем теории           |               |    |
| механизмов и машин в    |               |    |
| решении проектно-       |               |    |
| конструкторских и       |               |    |
| производственных задач; |               |    |
| методами расчета,       |               |    |
| проектирования          |               |    |
| механизмов и машин.     |               |    |

работы Практические И лабораторные считаются успешно выполненными в случае предоставления в конце занятий, отведенных на выполнение этой работы, отчета, включающего тему, ход работы, соответствующие рисунки и подписи (при наличии), и ответе на вопросы (защите) по теме работы. Шкала оценивания – «зачтено» / «не зачтено». «Зачтено» за практическую и лабораторную работу ставится в случае, если она полностью и правильно выполнена, и при этом обучающимся показано свободное владение материалом по дисциплине. «Не зачтено» ставится в случае, если практическая работа выполнена неверно и/или не полностью, и она возвращается студенту на доработку, а затем вновь сдаётся на проверку преподавателю.

Самостоятельная работа считается успешно выполненной в случае предоставления отчета по каждой теме. Задание для отчета соответствует пункту 9 рабочей программы. Оценивание отчетов проводится по принципу «зачтено» / «не зачтено». «Зачтено» выставляется в случае, если отчет оформлен в соответствии с критериями:

- правильность оформления отчета (титульная страница, оглавление и оформление источников);
  - уровень раскрытия темы отчета / проработанность темы;
  - структурированность материала;
  - количество использованных литературных источников.
- В случае если какой-либо из критериев не выполнен, отчет возвращается на доработку.
- В конце семестра обучающийся письменно отвечает на тестовые задания, содержащие вопросы по изученному материалу. Оценивание

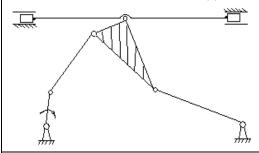
тестовых заданий проводится по принципу «зачтено» / «не зачтено». В качестве критериев оценивания используется количество правильных ответов. При ответе более чем, на 60 % вопросов выставляется «зачтено», в случае меньшего количества правильных ответов ставится «не зачтено».

К экзамену по дисциплине обучающиеся допускаются при:

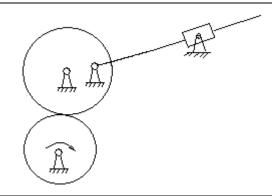
- предоставлении и защите отчетов по всем практическим занятиям;
- успешном написании модулей.

Экзамен сдается по билетам, в которых представлено 2 теоретических вопроса из перечня «Вопросы для экзамена». Оценивание проводится по принципу «отлично» / «хорошо» / «удовлетворительно» / «неудовлетворительно».

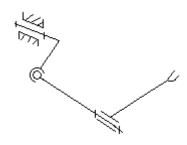
«Отлично» ставится при правильном, полном и логично построенном ответе, умении оперировать специальными терминами, использовании в ответе дополнительного материала, иллюстрировании теоретического положения практическим материалом. «Хорошо» ставится, если при ответе имеются негрубые ошибки или неточности. В случае затруднения в использовании практического материала и не вполне законченных выводов или обобщений в ответе, ставится оценка «удовлетворительно».


«Неудовлетворительно» ставится при схематичном неполном ответе и неумении оперировать специальными терминами или их незнании.

Для оценки текущего уровня формирования компетенций проводятся письменные опросы по теории (модули).


Примеры заданий на модули.

#### Модуль №1. Вариант №1


- 1. Дайте определение понятиям: звено, кинематическая пара.
- 2. Сколько степеней свободы и условий связи имеют кинемат. пары 1 и 4 классов?
- 3. Начертите схему кривошипно-кулисного механизма, обозначьте кинемат. пары, класс кинематических пар, звенья механизма, напишите названия звеньев.
- 4. Дайте определение понятию «структурная группа», начертите структурную группу 2 класса.
- 5. Рассчитайте степень свободы и напишите структурную формулу данного механизма.



6. Рассчитайте степень свободы механизма.



7. Рассчитайте степень свободы механизма.



- 8. Начертите схему кулачкового механизма с плоским кулачком, центральным толкателем с роликом.
- 9. Дайте общее определение понятию «передаточное отношение». Изобразите схему многозвенной зубчатой передачи с последовательным соединением колёс, напишите формулу для расчета её передаточного отношения.
- 10. Опишите принцип работы механизма универсального шарнира Гука.

## Модуль №2. Вариант №1

- 1. Изобразите кривошипно-ползунный механизм. Постройте для него план скоростей.
- 2. Напишите размерности масштабных коэффициентов скорости, времени.
- 3. С помощью каких методов строят кинематические диаграммы?
- 4. Что такое угол давления кулачкового механизма, изобразите его на примере плоского кулачкового механизма.
- 5. Схематично изобразите один зуб зубчатого колеса. Обозначьте эвольвенту, начальную окружность, окружности выступов и впадин. Покажите шаг зубчатого колеса по начальной окружности, высоту головки зуба. Как рассчитать эти величины. Как рассчитать диаметр начальной окружности.
- 6. Объясните кинематику изготовления нулевых зубчатых колес.
- 7. Назовите методы обработки эвольвентных профилей зубьев. Приведите примеры режущих инструментов для каждого из методов.

#### Модуль №2.Вариант №2

- 1. Изобразите шарнирный четырехзвенник. Постройте для него план скоростей.
- 2. Напишите размерности масштабных коэффициентов ускорения, угла поворота звена.
- 3. Изобразите фазовые углы на примере плоского кулачкового механизма.
- 4. Схематично изобразите один зуб зубчатого колеса. Обозначьте эвольвенту, начальную окружность, окружности выступов и впадин. Покажите высоту и ширину зуба. Как рассчитать эти величины. Как рассчитать диаметр окружности впадин.
- 5. В чем заключается явление подрезания ножки зуба?
- 6. Что характеризует коэффициент зацепления (перекрытия) зубчатого соединения?
- 7. Какие зубчатые колеса называют корригированными? Какие виды зубчатых зацеплений могут быть составлены из нулевых и корригированных зубчатых колес?

## Модуль №2.Вариант №3

1. Изобразите кривошипно-кулисный механизм. Постройте для него план скоростей.

- 2. Напишите размерности масштабных коэффициентов угловой скорости, угла поворота звена.
- 3. Изобразите пространственный цилиндрический кулачок. В чем заключается построение его профиля.
- 4. Перечислите хотя бы четыре окружности, характеризующие профиль зубчатого колеса. Что такое «модуль зубчатого колеса».
- 5. Схематично изобразите один зуб зубчатого колеса. Обозначьте эвольвенту, начальную окружность, окружности выступов и впадин. Покажите шаг зубчатого колеса по начальной окружности и высоту ножки зуба. Как рассчитать эти величины. Как рассчитать диаметр окружности выступов.
- 6. Объясните кинематику изготовления положительных зубчатых колес.
- 7. Перечислите условия синтеза многозвенных зубчатых передач.

#### Модуль №2.Вариант №4

- 1. Изобразите кривошипно-ползунный механизм. Постройте для него план ускорений.
- 2. Напишите размерности масштабных коэффициентов углового ускорения, времени.
- 3. С помощью какого метода строят профили кулачков, в чём он заключается?
- 4. С какой целью строится «вспомогательный эллипс» при профилировании плоских кулачков?
- 5. Схематично изобразите один зуб зубчатого колеса. Обозначьте эвольвенту, начальную окружность, окружности выступов и впадин. Покажите ширину впадины зубчатого колеса по начальной окружности и высоту головки зуба. Как рассчитать эти величины. Как рассчитать диаметр начальной окружности.
- 6. Объясните кинематику изготовления отрицательных зубчатых колес.
- 7. Назовите методы обработки эвольвентных профилей зубьев. Приведите примеры режущих инструментов для каждого из методов.

#### Модуль №3. Вариант №1

- 1. Статические, динамические и кинетостатические расчеты. Принцип Д'Аламбера.
- 2. Коэффициент трения. Определение реакции в поступательной паре с учетом силы трения.
- 3. Кинетическая энергия механизма. Чему она равна при установившемся движении?
- 4. Манипулятор, автооператор, промышленный робот.

## Модуль №3.Вариант №3

- 1. Движущие силы и силы сопротивления. Силы вредного и полезного сопротивления.
- 2. Основные методы виброзащиты. В чем заключается виброизоляция механизмов?
- 3. Коэффициент полезного действия (КПД) и коэффициент потерь. Охарактеризуйте движение механизма вхолостую и явление самоторможения механизма.
- 4. Циклограмма и тактограмма машины. Виды циклограмм.

#### Модуль №3.Вариант №2

- 1. Какие три вида движения характеризует тахограмма механизма? Опишите каждое из них.
- 2. Коэффициент трения. Определение реакции во вращательной паре с учетом силы трения.

- 3. В чем заключается динамическая балансировка вращающихся масс? Что такое дисбаланс массы.
- 4. Манипулятор. Основные элементы и структура манипулятора.

#### Модуль №3.Вариант №4

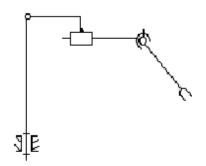
- 1. Сила инерции, момент пары сил инерции. Центральный момент инерции звена
- 2. Какие зависимости называют механической характеристикой машины?
- 3. Виды трения в кинематических парах в зависимости от смазки соприкасающихся поверхностей.
- 4.Для чего в машинах применяют маховик? Коэффициент неравномерности хода машины.

## Вопросы для самопроверки

- 1. Дайте определение понятиям: низшая кинематическая пара, геометрически замкнутая кинематическая пара.
- 2. Напишите формулу для определения степени подвижности плоского и пространственного механизмов.
- 3. Начертите схему кривошипно-ползунного механизма, обозначьте кинематическая пары, название звеньев, класс кинематических пар.
- 4. Дайте определение понятию «структурная группа», начертите структурную группу 1 класса.
- 5. Напишите размерность масштабных коэффициентов ускорения, перемещения звена.
- 6. Начертите схему кулачкового механизма с плоским кулачком, смещенным толкателем с острием.
- 7. Назовите фазовые углы плоского кулачкового механизма, что такое коэффициент зацепления (перекрытия) зубчатого соединения?
- 8. Дайте общее определение понятию «передаточное отношение», расчет передаточного отношения для цилиндрической зубчатой передачи.
- 9. Объясните кинематику изготовления нулевых зубчатых колес.
- 10. Опишите работу механизма фрикционной передачи.
- 11. Изобразите схему механизма Кардана, опишите принцип его работы.
- 12. Начертите схему гидравлического механизма, опишите принцип его работы.
- 13. Начертите схему цилиндрической зубчатой передачи, расчет передаточного отношения.
- 14. Начертите схему дифференциальной зубчатой передачи с указанием названия звеньев. Расчет передаточного отношения методом обращения движения.
- 15. Движущие силы и силы сопротивления. Силы вредного и полезного сопротивления.
- 16. Основные методы виброзащиты. В чем заключается виброизоляция механизмов?

- 17. Коэффициент полезного действия (КПД) и коэффициент потерь. Охарактеризуйте движение механизма вхолостую и явление самоторможения механизма.
- 18. Циклограмма и тактограмма машины. Виды циклограмм.

#### Примеры тестовых экзаменационных заданий


#### 1.Структурный анализ механизмов.

| 1 | 7  | ` |   |   |    |   |
|---|----|---|---|---|----|---|
| • | 30 | n | A | н | 11 | o |

| 1. Завание                                                              |
|-------------------------------------------------------------------------|
| Отметьте правильный ответ                                               |
| Низшие кинематические пары имеют следующее достоинство перед высшими    |
| □ отсутствие замыкания звеньев                                          |
| □ высокая технологичность                                               |
| □ малые ограничения на относительные движения звеньев                   |
| □ способность передавать большие нагрузки и высокая износостойкости     |
| □ малое число связей и высокая относительная подвижность                |
| 2. Задание                                                              |
| Введите правильный ответ                                                |
| Звено, совершающее вращательное или возвратно-поступательное движение и |
| являющееся направляющей для ползуна, называется                         |
| Правильный вариант ответа:                                              |
| 3. Задание                                                              |
| Отметьте все правильные ответы                                          |
| Основными звеньями планетарной зубчатой передачи являются               |
| □ Сателлит                                                              |
| □ Кривошип                                                              |
| □ Центральное колесо                                                    |
| □ Водило                                                                |
| □ Кулиса                                                                |

#### 4. Задание

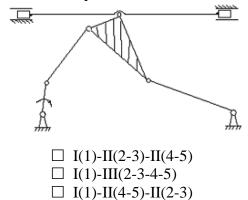

Рассчитайте степень свободы промышленного робота. Введите правильный ответ.



Правильный вариант ответа:

#### 5. Задание

Рассчитайте степень свободы промышленного робота. Введите правильный ответ.




Правильный вариант ответа:

#### 6. Задание

Структурная формула механизма выглядит следующим образом.

Отметьте правильный ответ.



#### 7. Задание

Отметьте правильный ответ

Соединение двух звеньев, допускающее их относительное движение называется

☐ Звено☐ Кинематическая пара☐ Машина☐ Механизм☐ Структурная группа

#### 8. Задание

Отметьте правильный ответ

Звено, профиль которого, имея переменную кривизну, определяет движение ведомого звена называется

| Ш | Кулачок           |
|---|-------------------|
|   | Кривошип          |
|   | Шатун             |
|   | Зубчатое колесо   |
|   | Мальтийский крест |
|   |                   |

#### 2.Динамический анализ механизмов.

#### 9. Задание

Отметьте правильный ответ

Процесс, при котором коэффициент полезного действия меньше единицы, а коэффициент потерь больше единицы, называется...

#### 10. Задание

Отметьте правильный ответ

Формула для расчета угла трения для поступательной пары с учетом коэффициента трения имеет следующий вид..

#### 11. Задание

Отметьте правильный ответ

Изменение кинетической энергии механизма за один оборот ведущего вала будет равна нулю при следующем виде движения

#### 3.Виброзащита механизмов и машин.

#### 12. Задание

Отметьте правильный ответ

Для расчета массы противовесов при динамической балансировке вращающихся масс используют величину, которая называется...

#### 13. Задание

Отметьте правильный ответ

Динамическая балансировка вращающихся масс заключается в следующем...

#### 4. Циклограмма. Тактограмма. Промышленные роботы.

#### 14. Задание

Отметьте правильный ответ

Циклограмма машины-автомата составляется, а затем используется для...

#### 15. Задание

Отметьте правильный ответ

Тактограмма работы машины-автомата составляется, а затем используется для

#### 16. Задание

Отметьте правильный ответ

Распределительный вал применяется в машине-автомате для...

#### Перечень вопросов к экзамену

- 1. Основные виды звеньев. Условные обозначения звеньев. Основные виды механизмов (их кинематические схемы).
- 2. Классификация кинематических пар.
- 3. Степень свободы механизмов. Структурные группы Ассура.
- 4. Виды четырехзвенных механизмов. Условие существования кривошипа.
- 5. Построение плана скоростей для шарнирного четырехзвенника.
- 6. Построение плана ускорений для шарнирного четырехзвенника.
- 7. Построение плана скоростей для кривошипно-ползунного механизма.
- 8. Построение плана ускорений для кривошипно-ползунного механизма.
- 9. Построение плана скоростей для кривошипно-кулисного механизма.
- 10. Построение плана ускорений для кривошипно-кулисного механизма.
- 11. Мальтийский механизм.

- 12. Построение кинематических диаграмм графическим дифференцированием и интегрированием. Масштабные коэффициенты.
- 13. Виды кулачковых механизмов. Заменяющие механизмы. Угол давления кулачкового механизма.
- 14. Виды трехзвенных зубчатых передач с неподвижными осями.
- 15. Механизмы многозвенных зубчатых передач с неподвижными осями.
- 16. Механизмы зубчатых передач с подвижными осями.
- 17. Синтез эвольвентного зубчатого зацепления. Эвольвента, эволюта. Построение эвольвенты.
- 18. Геометрические элементы зубчатых колес. Модуль зацепления. Угол зацепления. Коэффициент перекрытия.
- 19. Методы обработки эвольвентных профилей зубьев. Кинематика изготовления зубчатых колес. Подрезание ножки зуба.
- 20. Синтез многозвенных зубчатых механизмов.
- 21. Гидравлические и пневматические механизмы. Механизмы с гибкими звеньями. Винтовые механизмы.
- 22. Механизм универсального шарнира. Механизм двойного универсального шарнира. Фрикционные передачи.
- 23. Силы, действующие на звенья механизма. Статические, динамические, кинетостатические расчеты.
- 24. Построение диаграмм сил, работ, моментов и мощностей. Механическая характеристика машины.
- 25. Силы инерции и моменты инерции звеньев плоских механизмов.
- 26. Реакции связей. Уравнения кинетостатики. Условие кинетостатической определимости кинематической цепи.
- 27. Тахограмма механизма. Приведение силы и моменты сил. Кинетическая энергия механизма.
- 28. Приведение масс и моментов инерции. Коэффициент полезного действия. Коэффициент потерь. Коэффициент неравномерности. Маховик.
- 29. Уравновешивание вращающихся звеньев. Дисбаланс массы.
- 30. Теорема Жуковского.
- 31. Виды трения в кинематических парах. Трение скольжения.
- 32. Определение реакций в кинематических парах с учетом сил трения.
- 33. Вибрация механизмов и машин. Методы виброзащиты.
- 34. Динамическое гашение колебаний.
- 35. Виброизоляция механизмов и машин.
- 36. Манипулятор. Автооператор. Промышленный робот. Структура манипуляторов. ЧПУ.

### 14. Образовательные технологии

Реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

В учебном процессе при изучении дисциплины используются следующие формы проведения занятий:

- лекции с изложением определений основных понятий, изучаемых в рамках дисциплины, подробным описанием и доказательством наиболее важных свойств этих понятий и их взаимосвязей друг с другом;
- практические занятия с подробным изучением основных свойств понятий, изучаемых в рамках дисциплины, выяснением их взаимосвязей друг с другом в примерах и практических задачах;
- индивидуальные и коллективные консультации с активным участием обучающихся по наиболее сложным частям теоретического материала дисциплины;
- самостоятельная работа по выполнению заданий по основным разделам дисциплины.

успешного дисциплины Для освоения студенту необходимо рационально организовывать свое рабочее время: максимально эффективно использовать возможности получения информации по изучаемой дисциплине во время контактной работы с преподавателем (аудиторных занятий); фиксировать полученную информацию, проблемы и вопросы, остающиеся невыясненными. Крайне важно активно формировать целостное понимание предмета изучения, как в индивидуальной деятельности, коммуникации с преподавателями (в том числе по смежным дисциплинам) и коллегами (студентами). Особое значение для успешного освоения материала имеет выяснение взаимосвязей изучаемого курса и других дисциплин образовательной программы, его роль место формировании И обязательного набора компетенций – ключевого результата обучения.

Необходимым условием успешного освоения курса является дисциплинированность в посещении обязательных занятий, соблюдение сроков и выполнение требований к объему содержанию всех этапов отчетности по курсу.

Перед началом изучения дисциплины студенты должны быть ознакомлены с системой балльно-рейтинговой оценки. В расписании каждого преподавателя должно быть определено время консультаций студентов по материалу дисциплины.

Интерактивные формы организации занятий являются важнейшим средством практико-ориентированного обучения на основе реальных или модельных ситуаций применительно к виду и профилю профессиональной

деятельности обучающегося. Преподаватель при проведении занятий этих форм выполняет не роль руководителя, а функцию консультанта, советника, тренера, который лишь направляет коллективную работу студентов на принятие правильного решения. Занятие осуществляется в диалоговом режиме, основными субъектами которого являются студенты.

## 15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

#### ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Теория механизмов и машин: учебник для студ. учреждений высш. проф. образования / М. З. Коловский, А. Н. Евграфов [и др.]. 4-е изд., перераб. М.: Издательмкий центр "Академия", 2013. 560 с.: ил.; 21 см. (Бакалавриат). Библиогр.: с. 548 (17 назв.). Рекомендовано Учебнометодическим объединением по университетскому политехническому образованию. (3 экз.)
- 2. Тимофеев Г. А. Теория механизмов и машин : учеб. пособие / Г. А. Тимофеев. 2-е изд., перераб. и доп. М. : Изд-во Юрайт : ИД Юрайт, 2012. 351 с. : ил. ; 21 см. (Бакалавр. Базовый курс). Допущено УМО (5 экз.)
- 3. Копченков, В. Г. Теория механизмов и машин : учебное пособие / В. Г. Копченков. Ставрополь : Северо-Кавказский федеральный университет, 2018. 187 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: <a href="https://www.iprbookshop.ru/83235.html">https://www.iprbookshop.ru/83235.html</a>
- 4. Никитина, Л. И. Теория механизмов и машин. Курс лекций: учебник / Л. И. Никитина, В. А. Пяльченков. Тюмень: Тюменский индустриальный университет, 2019. 138 с. ISBN 978-5-9961-2000-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: <a href="https://www.iprbookshop.ru/101431.html">https://www.iprbookshop.ru/101431.html</a>

#### ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 5. Махова Н.С. и др. Основы теории механизмов и машин. М.: Владос, 2006.- 287 с.(1 экз.)
- 6. Теория механизмов и машин: учебное пособие для вузов/ М.З. Коловский, А.Н. Евграфов. М.: Академия, 2008.- 560 с. (2 экз.)
- 7. Смелягин А.И. Теория механизмов и машин. Новосибирск: Инфра-М, 2007.- 263 с. (3 экз.)
- 8. Мамаев А.Н. Теория механизмов и машин/ А.Н. Мамаев, Т. А. Балабина.- М: Экзамен, 2008.- 254 с.(2 экз.)
- 9. Белоконев И.М. Теория механизмов и машин/ И.М. Белоконев, С.А. Балан, К.И. Белоконев. Изд.2-е, испр. и доп., 2004.-172 с. (1 экз.)
- 10. Теория механизмов и машин : учебное пособие / В. И. Уральский, С. И. Гончаров, А. В. Шаталов [и др.]. Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2016. 196 с. ISBN 2227-8397. Текст : электронный // Электронно-

- библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/80475.html
- 11. Теория машин и механизмов. Ч.1 : учебное пособие / составители С. Г. Петров, И. В. Клюшкин, П. В. Кауров. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019. 65 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/102562.html
- 12. Теория машин и механизмов. Ч.2 : учебное пособие / составители С. Г. Петров, И. В. Клюшкин, П. В. Кауров. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019. 56 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/102563.html
- 13. Теория машин и механизмов. Ч.3 : учебное пособие / составители С. Г. Петров, И. В. Клюшкин, П. В. Кауров. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019. 84 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: <a href="https://www.iprbookshop.ru/102564.html">https://www.iprbookshop.ru/102564.html</a>
- 14. Теория машин и механизмов. Ч.4 : учебное пособие / составители С. Г. Петров, И. В. Клюшкин, П. В. Кауров. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019. 64 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/102565.html (дата обращения: 13.05.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/102565
- 15. Сапрыкина, Н. А. Теория механизмов и машин : учебно-методическое пособие / Н. А. Сапрыкина. 2-е изд. Томск : Томский политехнический университет, 2019. 143 с. ISBN 978-5-4387-0874-2. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: <a href="https://www.iprbookshop.ru/96097.html">https://www.iprbookshop.ru/96097.html</a>
- 16. Кичаев, Е. К. Теория механизмов и машин : учебное пособие / Е. К. Кичаев, П. Е. Кичаев, Л. А. Довнар. 2-е изд. Самара : Самарский государственный технический университет, ЭБС АСВ, 2016. 175 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/90941.html

#### МЕТОДИЧЕСКАЯ ЛИТЕРАТУРА

17. Милованова Л.Р. Лабораторный практикум. Часть 1. Структурный и кинематический анализ механизмов со сложным движением звеньев: метод.

- указ. к вып. лаб.раб./ Л.Р. Милованова, А.А. Легкоступ, В.С. Земченков. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А.- 24 с. (50 экз.)
- 18. Милованова Л.Р. Лабораторный практикум. Часть 2. Проектирование и исследование зубчатых передач: метод. указ. к вып. лаб.раб./ Л.Р. Милованова, А.А. Легкоступ, В.С. Земченков. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А.- 19 с. (50 экз.)
- 19. Милованова Л.Р., Чиркова О. А. Создание механизмов и машин (от теории к практике): метод. рекомендации к выполнению практической работы/ Л.Р.Милованова, О.А. Чиркова. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А. 27 с. (25 экз.)

#### ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНТЕРНЕТ-РЕСУРСЫ

- 1. Сайт кафедры «Техническая физика и информационные технологии» ЭТИ СГТУ имени Гагарина Ю.А. http://tfi.sstu.ru
- 2. Сайт кафедры «Основы проектирования машин» Южно-Уральского государственного университета (г. Челябинск) http://www/cnit/susu/ac/ru)
- 3. eLibrary.ru электронная библиотечная система. режим доступа: <a href="http://elibrary.ru/defaultx.asp">http://elibrary.ru/defaultx.asp</a>
- 4. IPRbooks электронно-библиотечная система. режим доступа: <a href="http://www.iprbookshop.ru/">http://www.iprbookshop.ru/</a> по паролю
- 5. ЭБС «Консультант студента» электронная библиотека технического вуза. режим доступа: <a href="http://www.studentlibrary.ru">http://www.studentlibrary.ru</a>, по паролю
- 6. Единое окно доступа к образовательным ресурсам информационная система. режим доступа: <a href="http://window.edu.ru/">http://window.edu.ru/</a>
- 7. КОМПАС-График (КОМПАС-3D) система разработки конструкторской документации (3D моделей)
- 8. Программный пакет Microsoft Office или OpenOffice
- 9. Система математических расчетов MathCAD.

## 16. Материально-техническое обеспечение

## Учебная аудитория для проведения занятий лекционного типа

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стульев проектор BENQ 631, рулонный проекционный экран, системный блок (Atom2550/4Гб/500, клавиатура, мышь), подключенный в сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome

Учебная аудитория для проведения занятий практического типа, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения: 11 столов, 11 скамеек; рабочее место преподавателя; классная меловая доска, учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

## **Учебная аудитория для проведения занятий лабораторного типа** Теория механизмов и машин

Укомплектована специализированной мебелью и техническими средствами обучения: 11 столов, 11 скамеек; рабочее место преподавателя; классная меловая доска, учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины. Макеты: рычажных и зубчатых механизмов, кривошипно-ползунного (кривошипно-шатунного) механизма, кулачкового механизма, универсального шарнира Гука, зубчатых механизмов с неподвижными осями, зубчатых механизмов с подвижными осями, планетарных механизмов, эпициклических зубчатых механизмов, ротора «Уравновешивание вращающихся масс».

| Рабочую программу состави | л        | · · · · · · · · · · · · · · · · · · · | /Л       | I.H. | Потехина/            |      |
|---------------------------|----------|---------------------------------------|----------|------|----------------------|------|
| 17. Дополнения            | и из     | менени                                | я в рабо | чей  | і программе          |      |
| Рабоча                    | я прс    | грамма                                | пересмо  | тре  | на на заседании кафе | едры |
|                           | <b>«</b> | >>>                                   | 20       | 0    | _ года, протокол №   |      |
|                           | 3a       | в. кафед                              | црой     |      | /                    | /    |
|                           | Вне      | сенные                                | изменен  | ия у | тверждены на заседа  | ании |
|                           |          |                                       |          |      | УМКС/УМ              | ЛКН  |
|                           | <b>«</b> | »                                     | 2        | 20   | _ года, протокол №   |      |

Председатель УМКН \_\_\_\_\_\_/