Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Технология и оборудование химических, нефтегазовых и пищевых производств»

РАБОЧАЯ ПРОГРАММА

по дисциплине

<u>Б.1.2.9 «Управление техническими системами»</u> (шифр и наименование дисциплины по УП)

Направление подготовки <u>15.03.02 «Технологические машины и оборудование»</u> Профиль 1: «Машины и аппараты пищевых производств»

форма обучения – очная курс – 4 cemectp - 8 cemectpзачетных единиц – 3 часов в неделю – 5 всего часов – 108 в том числе: лекции -22коллоквиумы – нет практические занятия – 11 лабораторные занятия – 1 самостоятельная работа – 64 зачет – нет экзамен – 8 семестр РГР – нет курсовая работа – нет курсовой проект – нет

Рабочая программа обсуждена на заседании кафедры ТОХП 20.06.2022 года, протокол №10 Зав. кафедрой шеши Н.Л.Левкина

Рабочая программа утверждена на заседании УМКН направления НФГД 27.06.2022 года, протокол №5 Председатель УМКН месмы Н.Л.Левкина

Энгельс 2022

1. ЦЕЛЬ И ЗАДАЧИ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

1.1 . Цель преподавания дисциплины

Целью освоения дисциплины Б.1.2.12 «Управление техническими системами» состоит в более глубокой подготовке специалистов в области создания и эксплуатации технологического оборудования пищевых производств.

Дисциплина ориентирована на бакалавров, занимающихся обслуживанием и проектированием оборудования нефтегазовых производств.

Знание особенностей функционирования систем автоматического управления позволит специалистам технологам по показаниям приборов контроля, а также особенностям функционирования средств и систем автоматизации оценить состояние оборудования в процессе его нормальной эксплуатации и обеспечить его бесперебойную и безаварийную работу.

Задачей курса является представление проблемы обеспечения высокого уровня автоматизации производств пищевой промышленности. Основное внимание обращается на вопросы определения показателей надежности (на уровне выбора схем, конструкций, расчетов, проектирования, правильной эксплуатации и обслуживания, диагностики и ремонта), а также общие вопросы количественного оценивания показателей автоматизации и технического уровня оборудования.

2. Место дисциплины в структуре ООП ВО

Дисциплина относится к вариативной части блока Б.1. Дисциплина «Управление техническими системами» базируется на дисциплинах учебного плана подготовки бакалавров, предшествующих указанной дисциплине: Б.1.1.5 «Математика», Б. 1.1.6 «Физика», Б. 1.1.7 «Химия», Б. 1.2.13. «Процессы и аппараты пищевых производств».

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование следующих компетенций:

- ОПК-1- способность к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий,
- ПК-1- способность к систематическому изучению научно-технической информации, отечественного и зарубежного опыта по соответствующему профилю подготовки,
- ПК-2- умение моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов.

В результате освоения дисциплины обучающийся должен:

- **3.1** <u>Знать</u>: основные технологические принципы эксплуатации современных автоматизированных технологических линий;- особенности функционирования систем автоматического управления;
- **3.2** <u>Уметь</u>: проводить пуск технологических линий с выводом на проектную производительность, стабилизировать технологический процесс, использовать контуры автоматического регулирования технологическим процессом, выявлять взаимосвязь различных параметров;.
- **3.3 <u>Владеть</u>:** способами управления технологическим процессом разных переделов современной автоматизированной технологической линии.

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

Mo	No No				Из них					
	<u>№</u> Неде ли	№ темы	Наименование темы	Всего	Лекции	Коллок- виумы	Лабора- торные	Прак- тичес- кие	CPC	
1	2	3	4	5	6	7	8	9	10	
1	1,2		Функциональные схемы КИП и А	18	4	-	2	2	10	
1	3,4		Основные технологиче- ские параметры и выбор измерительных приборов для их контроля	22	4	-	2	2	14	
1	5,6		Измерение физико- химических свойств и со- става вещества-	23	4	-	2	3	14	
2	7,8	3	Математические модели АСР	20	6	-	2	2	10	
2	9	3	Промышленные автома- тические регуляторы	25	4	-	3	2	16	
				108	22	_	11	11	64	

5. СОДЕРЖАНИЕ ЛЕКЦИОННОГО КУРСА

№ Tembi	Всего часов	№ лек- ции	Темы лекции. Вопросы, отрабатываемые на лекции.	Учено- методическое обеспечение
1	2	3	4	5
1	4	1,2	Функциональные схемы КИП и А Элементы и системы измерительной техники в производствах. Функции локальных систем автоматизации технологических процессов	1-9
2	4	3,4	Основные технологические параметры и выбор измерительных приборов для их контроля. Измерение температуры Измерение давления, уровня жидкостей и сыпучих материалов Измерение расхода и количества вещества	1-9
2	4	5,6	Измерение физико-химических свойств и состава вещества	1-9
3	6	7,8	Основные понятия теории автоматического управления Математические модели АСР и отдельных звеньев Надежность АСУ ТП.	1-9
3	2	9	Промышленные автоматические регуляторы Понятия и определения автоматического регулирования технологических процессов Серийные промышленные регуляторы Системы дистанционного измерения и управления Проектирование и наладка промышленных систем регулирования. Определение оптимальных настроек регуляторов.	1-9

7. ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№ Tembi	Всего ча-	№ pa6.	Наименование практических работ.	Учено- методическое обеспечение
1	2	3	4	5
1	2	1	Типовые схемы автоматизации. Возможные пути решения схем автоматизации.	1-9
2	5	1	Основные технологические параметры. Выбор измерительных приборов для контроля технологических параметров	1-9
3	4	2	Основные понятия теории автоматического управления Математические модели АСР и отдельных звеньев Надежность АСУ ТП. Понятия и определения автоматического регулирования технологических процессов	1-9

8.ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

№ Tembi	Всего ча-	№ pa6.	Наименование лабораторной работы. Вопросы, отра- ботанные на лабораторном занятии	Учено- методическое обеспечение
1	2	3	4	5
1	2	1	Двухпозиционное регулирование воздуха с помощью электроконтактного манометра	1-9
2	2	2	Определение погрешностей показаний пружинных манометров	1-9
2	2	3	Поверка градуировки логометра	1-9
3	3	4	Градуировка термопары	1-9
3	2	5	Исследование индуктивного преобразователя	1-9

9. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНЫХ РАБОТ СТУДЕНТОВ

№ те-	Всего	Вопросы для самостоятельного изучения	Учено-
МЫ	час		методическое
			обеспечение
1	10	Статическая характеристика измерительного прибора.	1-6
		Чувствительность, цена деления, порог чувствительности	
		прибора. Динамическая характеристика измерительного	
		прибора. Динамическая чувствительность датчика. Ча-	
		стотная характеристика измерительного преобразователя.	
		Методы уменьшения систематической составляющей по-	
		грешности. Структурные методы уменьшения погрешно-	
		сти. Понятие градуировки датчиков. Прямая градуировка	
		датчика. Косвенная градуировка датчика.	
2	14	Измерение температуры твердых тел и поверхностей. Из-	1-6

	1	_	
		мерение температур газовых потоков. Пирометры излуче-	
		ния. Принцип действия. Пирометры спектрального отно-	
		шения. Пирометры полного излучения. Датчики для изме-	
		рения больших давлений при высокой температуре. Ин-	
		дуктивные датчики давления. Датчик давления со следя-	
		щей системой с уравновешиванием силы. Манометр Пи-	
		рани. Калориметрические расходомеры. Дозирование сы-	
		пучих материалов. Одноагрегатные и двухагрегатные доза-	
		торы непрерывного действия. Типы грузоприемных	
		устройств ленточных дозаторов непрерывного действия.	
		Дозирование жидких материалов. Характеристики течения	
		жидкости в трубах. Локальные уравнения однофазного те-	
		чения. Термоанемометры.с нагретой металлической лен-	
		той. Ионный анемометр.	
2	14	Идеальная (ньютоновская) жидкость. Напряжение сдвига.	1-6
		Простые вязкоупругие жидкости. Тело Сен-Венана. Рео-	
		логические модели тел Максвелла и Фойгта (Кельвина).	
		Уравнение Эйринга-Пуазеля. Степенное уравнение. Вис-	
		козиметр с коаксиальными цилиндрами. Электроды пер-	
		вого и второго рода. Поляризация. Перенапряжение.	
		Уравнение Нернста-Айзенмана. Натриевая ошибка. Коэф-	
		фициент селективности.	
		Диффузионный ток электролиза. Капающий ртутный	
		электрод. Закон Фика. Уравнение Ильковича. Зависимость	
		тока от температуры. Основы диэлькометрических мето-	
		дов анализа. Охарактеризуйте объект и перечислите осо-	
		бенности контуров стабилизации расхода, нарисуйте схе-	
		му автоматизации. Какие требования предъявляются к си-	
		стемам автоматического регулировании давления? Нари-	
		суйте схему автоматизации. На какие группы по соотно-	
		шению т/Т разделяются системы автоматического регули-	
		рования температуры? Какие применяются способы уста-	
		новки чувствительного элемента датчика температуры для	
		улучшения качества работы системы регулирования? По	
		каким признакам классифицируются системы автоматиче-	
		ской стабилизации уровня?	
		Опишите порядок формулирования требований к автома-	
		тической системе. Перечислите инженерные методы раци-	
		онального синтеза структуры системы	
3	10	В каких случаях схемы автоматической стабилизации па-	1-6
		раметров процессов строятся на средствах вычислитель-	
		ной и микропроцессорной техники? Какие законы регули-	
		рования в большинстве случаев применяются в системах	
		автоматической стабилизации параметров?	
		На основании каких критериев выбираются конкретные	
		законы регулирования технологических параметров? Ка-	
		кие методы используются для выбора регуляторов и пара-	
		метров их настроек в системах автоматической стабилиза-	
		ции параметров процессов?. Что такое матрица Бристоля?	
		Каковы особенности применения средств вычислительной	
		техники для управления периодическими процессами?	
3	16	Линеаризация статической характеристики мостовой схе-	1-6

мы. Мостовые схемы с коррекцией влияния температуры. Устранение влияния соединительных проводов. Трехпро-	
водная, четырехпроводная схемы включения датчика в	
мост. Измерение параметров емкостного датчика. Измерение параметров индуктивного датчика. Генераторные из-	
мерительные схемы. Схемы с генерированием синусоидальных колебаний. Измерительные схемы релаксацион-	
ного типа.	

10. КУРСОВОЙ ПРОЕКТ

Курсовой проект по данной дисциплине не предусмотрен.

11. КУРСОВАЯ РАБОТА

Курсовая работа по данной дисциплине не предусмотрена.

12. РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

Расчетно-графическая работа по данной дисциплине не предусмотрена.

13. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕ-СТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины Б.1.2.12. «Управление техническими системами» должны сформироваться профессиональные компетенции ОПК-1, ПК-1,2.

Под компетенцией ОПК-1 понимается способность к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий.

Под компетенцией ПК-1- способность к систематическому изучению научнотехнической информации, отечественного и зарубежного опыта по соответствующему профилю подготовки,

Под компетенцией ПК-2- умение моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов.

Код	Этап	Показатели оценивания	Критерии оценивания			
ком-	форми-					
петен-	рования					
ции						
0ПК-1	8 ce-	1. Знание методов построения тех-	Промежуточ-	Типовые за-	Шкала	
ПК-	местр	нологических схем на основе хи-	ная аттеста-	дания	оценивания	
1,2		мико-технологических процессов;	ция			
		особенностей функционирования	Текущий кон-	Лаборатор-	5-ти баль-	
		систем автоматического управле-	троль в форме	ные и прак-	ная шкала	
		ния; методов разработки алгорит-	отчета по ла-	тические ра-		
		мов управления химико-	бораторным и	боты, вопро-		
		технологических процессов.	практическим	сы и тесто-		
		2. Умение применять методы ана-	работам, те-	вые задания,		

лиза и синтеза систем автоматиче-	стирование,	вопросы к	
ского управления химико-	экзамен.	экзамену.	
технологическими процессами.			
3. Владение методами определения			
оптимальных и рациональных тех-			
нологических режимов работы			
оборудования; особенностями			
функционирования средств и си-			
стем автоматизации и обеспечить			
их бесперебойную и безаварийную			
работу			

Для формирования данных компетенций необходимы базовые знания разделов Б.1.1.5 «Математика», Б. 1.1.6 «Физика», Б. 1.1.7 «Химия», Б. 1.2.13. «Процессы и аппараты пищевых производств».

12. ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Функции локальных систем автоматизации технологических процессов. Автоматический контроль и сигнализация.
- 2. Функции локальных систем автоматизации технологических процессов. Автоматическое регулирование.
- 3. Функции локальных систем автоматизации технологических процессов. Автоматический пуск и остановка, автоматическая защита.
- 4. Основные технологические параметры и выбор измерительных приборов для их контроля.
- 5. Измерение температуры. Термометры расширения.
- 6. Измерение температуры. Манометрические термометры.
- 7. Измерение температуры. Электрические термометры сопротивления.
- 8. Измерение температуры. Термоэлектрические термометры.
- 9. Измерение давления.
- 10. Измерение уровня жидкостей и сыпучих материалов.
- 11. Измерение расхода и количества вещества.
- 12. Измерение физико-химических свойств и состава вещества. Измерение плотности.
- 13. Измерение физико-химических свойств и состава вещества. Измерение вязкости.
- 14. Измерение физико-химических свойств и состава вещества. Измерение концентрации растворов.
- 15. Измерение физико-химических свойств и состава вещества. Измерение состава газовых смесей.
- 16. Системы дистанционного измерения и управления.
- 17. Понятия и определения автоматического регулирования технологических процессов.
- 18. Математические модели АСР и отдельных звеньев.
- 19. Элементы автоматического регулирования.
- 20. Серийные промышленные регуляторы.
- 21. Многоконтурные АСР.
- 22. Промышленные автоматические регуляторы.
- 23. Позиционные регуляторы.
- 24. Пропорциональные регуляторы.
- 25. Интегральные, пропорционально-интегральные, ПИД- регуляторы
- 26. Надежность АСУ ТП.
- 27. Погрешности измерений и измерительных приборов.

- 28. Основные понятия теории автоматического управления (ТАУ)
- 29. Линеаризация дифференциальных уравнений
- 30. Преобразование Лапласа и передаточные функции
- 31. Временные динамические характеристики
- 32. Частотные характеристики
- 33. Соединения элементов (элементарных звеньев)
- 34. Типовые звенья (элементы) для представления любых САУ
- 35. Устойчивость и качество САУ
- 36. Критерии устойчивости Рауса-Гурвица.
- 37. Критерии устойчивости Михайлова.
- 38. Критерии устойчивости Найквиста.

14. Образовательные технологии

Реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

В учебном процессе при изучении дисциплины используются следующие формы проведения занятий:

- лекции с изложением определений основных понятий, изучаемых в рамках дисциплины, подробным описанием и доказательством наиболее важных свойств этих понятий и их взаимосвязей друг с другом;
- практические занятия с подробным изучением основных свойств понятий, изучаемых в рамках дисциплины, выяснением их взаимосвязей друг с другом в примерах и практических задачах;
- индивидуальные и коллективные консультации с активным участием обучающихся по наиболее сложным частям теоретического материала дисциплины;
- самостоятельная работа по выполнению заданий по основным разделам дисциплины.

15. СПИСОК ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ ПО ДИСЦИПЛИНЕ

Основная литература

- 1. Коновалов Б.И. Теория автоматического управления [Электронный ресурс]: учебное методическое пособие/ Коновалов Б.И., Лебедев Ю.М.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2010.— 162 с.— Режим доступа: http://www.iprbookshop.ru/13869.— ЭБС «IPRbooks», по паролю
- 2. Храменков В.Г. Автоматизация производственных процессов [Электронный ресурс]: учебник/ Храменков В.Г.— Электрон. текстовые данные.— Томск: Томский политехнический университет, 2011.— 343 с.— Режим доступа: http://www.iprbookshop.ru/34647.— ЭБС «IPRbooks», по паролю
- 3. Автоматизация и управление в технологических комплексах [Электронный ресурс]/ А.М. Русецкий [и др.].— Электрон. текстовые данные.— Минск: Белорусская наука, 2014.— 376 с.— Режим доступа: http://www.iprbookshop.ru/29574.— ЭБС «IPRbooks», по паролю
- 4. Федотов А.В. Основы теории автоматического управления [Электронный ресурс]: учебное пособие/ Федотов А.В.— Электрон. текстовые данные.— Омск: Омский государ-

ственный технический университет, 2012.— 279 с.— Режим доступа: http://www.iprbookshop.ru/37832.— ЭБС «IPRbooks», по паролю http://techn.sstu.ru/new/private_office/Disc.aspx

Дополнительная литература

- 5. Калиниченко А.В. Справочник инженера по контрольно-измерительным приборам и автоматике [Электронный ресурс]/ Калиниченко А.В., Уваров Н.В., Дойников В.В.— Электрон. текстовые данные.— Вологда: Инфра-Инженерия, 2015.— 575 с.— Режим доступа: http://www.iprbookshop.ru/5075.— ЭБС «IPRbooks», по паролю
- 6. Решетняк Е.П. Системы управления химико-технологическими процессами [Электронный ресурс]: конспект лекций для студентов специальности «Биотехнология»/ Решетняк Е.П.— Электрон. текстовые данные.— Саратов: Саратовский государственный аграрный университет имени Н.И. Вавилова, Вузовское образование, 2009.— 213 с.— Режим доступа: http://www.iprbookshop.ru/8143.— ЭБС «IPRbooks», по паролю
- 7. Решетняк Е.П. Системы управления химико-технологическими процессами [Электронный ресурс]: учебное пособие/ Решетняк Е.П., Алейников А.К., Комиссаров А.В.— Электрон. текстовые данные.— Саратов: Саратовский военный институт биологической и химической безопасности, Вузовское образование, 2008.— 416 с.— Режим доступа: http://www.iprbookshop.ru/8144.— ЭБС «IPRbooks», по паролю
- 8. Федоров Ю.Н. Справочник инженера по АСУТП. Проектирование и разработка [Электронный ресурс]: учебно-практическое пособие/ Федоров Ю.Н.— Электрон. текстовые данные.— Вологда: Инфра-Инженерия, 2016.— 928 с.— Режим доступа: http://www.iprbookshop.ru/5060.— ЭБС «IPRbooks», по паролю
- 9. Латышенко К.П. Автоматизация измерений, испытаний и контроля [Электронный ресурс]: учебное пособие/ Латышенко К.П.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2013.— 307 с.— Режим доступа: http://www.iprbookshop.ru/20390.— ЭБС «IPRbooks», по паролю

Интернет-ресурсы:

Единое окно доступа к образовательным ресурсам http://window.edu.ru/ Сайт научно-технического центра АПМ http://www.apm.ru/rus/ Источники ИОС http://techn.sstu.ru

14. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория для проведения занятий лекционного типа

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стула; рабочее место преподавателя; доска для написания фломастером; проектор BENQ 631, рулонный проекционный экран, ноутбук с подключением к сети с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Укомплектована специализированной мебелью и техническими средствами обучения: 10 столов, 20 стульев; рабочее место преподавателя; доска для написания мелом

Укомплектована лабораторными стендами для выполнения лабораторных работ:

«Двухпозиционное регулирование давления воздуха с помощью электроконтактного манометра»; «Определение погрешности показаний пружинных манометров»; «Поверка градуировки логометра»; «Градуировка термопары»; «Исследование индуктивного преобразователя». Лабораторные стенды: «Двухпозиционное регулирование давления воздуха с помощью электроконтактного манометра»; «Определение погрешности показаний пружинных манометров»; «Поверка градуировки логометра»; «Градуировка термопары»; «Исследование индуктивного преобразователя».

Учебная аудитория для проведения занятий практического типа, выполнения курсовых работ, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций.

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стула; рабочее место преподавателя; доска для написания фломастером.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Автор(ы) Апостолов С.П.

17. Дополнения и изменения в рабочей программе

	Рабоч	ая проі		-	на на заседании і	
	<u> </u>	_>>	20	года	ı, протокол №	
		Зав. 1	кафедрой _		/	/
Внес	енные и	зменен	ия утвержд	ены на	заседании УМКО	С/УМКН
		«	»	20	_ года, протокол	í №
	Предс	едател	ь УМКС/У	МКН	/	/