Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Технологии и оборудование химических, нефтегазовых и пищевых производств»

РАБОЧАЯ ПРОГРАММА

по дисциплине

«Б.1.3.7.1 Основы автоматизированного проектирования»

направления подготовки

15.03.02 «Технологические машины и оборудование»

профиль 2: «Оборудование химических и нефтегазовых производств»

форма обучения – заочная курс - 4семестр - 8зачетных единиц – 3 часов в неделю – 3 всего часов – 108 в том числе: лекции – 6 коллоквиумы – нет практические занятия – 10 лабораторные занятия – нет самостоятельная работа – 92 экзамен – нет зачет - 8 семестр $P\Gamma P$ — нет курсовая работа – нет курсовой проект – нет

Рабочая программа обсуждена на заседании кафедры ТОХП 19 июня 2023 г., протокол №13 Зав. кафедрой может Н.Л. Левкина

Рабочая программа утверждена на заседании УМКН направления НФГД 23 июня 2023 г., протокол №5 Председатель УМКН _______ Н.Л. Левкина

1. Цели и задачи освоения дисциплины

Целью дисциплины является сформировать у студентов комплекс знаний, позволяющий модернизировать, разрабатывать и конструировать сложные технологические линии и механизмы нефтехимической промышленности в более короткие сроки; усвоить современные подходы к автоматизированным системам для конструкторско-проектных работ.

Для достижения этой цели преподавание дисциплины предполагает:

- 1.1. Воспитание у выпускников деловых качеств и необходимого уровня общей технической культуры;
- 1.2. Способствовать формированию у студента обобщенных приемов конструкторской деятельности;
- 1.3. Развить у студентов профессиональное мышление, чтобы будущий бакалавр смог переносить общие методы конструкторской работы в работу по направлению;
- 1.4. Обеспечить возможность овладения студентами совокупностью знаний и умений, соответствующих уровню бакалавра по направлению подготовки 15.03.02 «Технологические машины и оборудование» (ТМОБ).

Теоретическая часть дисциплины излагается в лекционном курсе. Полученные знания закрепляются на практических занятиях. Самостоятельная работа предусматривает работу с учебниками и учебными пособиями, выполнение домашних заданий, подготовку к зачету.

2. Место дисциплины в структуре ООП ВО

Настоящая дисциплина относится к Блоку 1 (дисциплины) и является дисциплиной по выбору учебного плана в системе подготовки бакалавра по направлению 15.03.02 «Технологические машины и оборудование».

Изучение дисциплины «Основы автоматизированного проектирования» основано на базе знаний, умений и компетенций, формируемых следующими дисциплинами: Б.1.1.9 Информационные технологии, Б.1.1.12 Инженерная графика, Б.1.1.13 Техническая механика, Б.1.1.14 Основы проектирования, Б.1.3.4.1 Прикладные компьютерные программы, Б.1.1.18 Метрология, стандартизация и сертификация, Б.1.2.5 Механика жидкости и газа, Б.1.2.9 Сопротивление материалов, Б.1.2.10 Технология конструкционных материалов, Б.1.2.11 Теплотехника, Б.1.2.15 Расчет и конструирование машин и аппаратов, Б.1.2.11 Теплотехника, Б.1.2.14 Подъемно-транспортные установки.

Необходимым условием для освоения дисциплины является владение целостной системой знаний.

Знания, умения и навыки, полученные студентами в процессе изучения дисциплины, являются базой для изучения следующих дисциплин: Б.1.2.12 Управление техническими системами, Б.1.2.14 Оборудование химических и нефтехимических производств, Б.1.3.7.1 Математическое моделирование и оптимизация тепло- и массообменных процессов и установок, Б.1.2.17 Технологическое оборудование, Б.1.3.6.1 Технологическое оборудование хлебопекарного, кондитерского и макаронного производства, Б.1.3.9.1 Холодильные машины и установки, Б.1.3.9.2 Поточные технологические линии пищевых производств, Б.1.3.10.1 Вентиляционные установки, Б.1.3.10.2 Элеваторы, склады, зерносушилки.

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование следующих компетенций:

- ОПК-2 владением достаточными для профессиональной деятельности навыками работы с персональным компьютером;
- ПК-2 умением моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов;

- ПК-5 способностью принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования;
- ПК-6 способностью разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам.

В результате освоения дисциплины обучающийся должен:

3.1. Знать:

- современное программное обеспечение для создания и обработки графических изображений и выполнения инженерных расчетов (ПК-2, ПК-5);
- методы и способы построения трехмерных объектов и алгоритмов расчета (ПК-2); 3.2. Уметь:
- разрабатывать порядок проектирования детали в зависимости от ее сложности, выбирая наиболее оптимальные методы построения отдельных элементов (ОПК-2);
- использовать современные информационные технологии для моделирования и оптимизации деталей (ОПК-2);
 - проектировать детали с заданными параметрами и характеристиками (ПК-5);
 - находить компромисс между различными требованиями (ПК-6);

3.3. Владеть:

- практическими навыками использования интерфейса современных программ САПР (КОМПАС-3D) (ПК-5);
- практическими навыками построения трехмерных объектов машиностроительных деталей и их сборок (ПК-5,6);
- практическими навыками создания и оформления конструкторской документации (графической и текстовой) в системах САПР (рабочие и сборочные чертежи деталей, спецификации, расчеты, таблицы, пояснительные записки) (ПК-6).

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

№	№	No	Наименование темы	Часы					
MO	не	те			Лек	Кол	Лаб	Прак-	
ду	де	МЫ		Всего	-	лок-	opa-	тичес	CPC
ЛЯ	ЛИ				ции	виу	торн	-кие	
						МЫ	ые		
		1	Общая характеристика	1	1			_	_
			программного обеспечения САПР.						
			Графические редакторы САПР.						
1		2	Проектирование в среде Компас	57	1			10	46
			3D. Трехмерное твердотельное						
			параметрическое моделирование						
1		3	Структура и основные принципы	24	2			-	22
			построения системы АКД.						
			Структурная модель САПР.						
			Организация процесса						
			проектирования. Системный						
			подход в проектировании.						
2		4	Информационное обеспечение.	26	2			_	24
			Техническое обеспечение.						
			Лингвистическое обеспечение.						
			Математическое обеспечение						
Bcer	Всего				6			10	92

5. Содержание лекционного курса

No	Всего	$N_{\underline{0}}$	Тема лекции. Вопросы, отрабатываемые на лекции	Учебно-
темы	часов	лекции		методическое
				обеспечение
1	1	1	Проектирование в среде Компас 3D. Интерфейс,	[3]
			сервис, типы документов. Параметрические	[4]
			возможности графических редакторов.	[5] [7] [8]
			Трехмерное твердотельное параметрическое	
			моделирование.	
2	1	1	Общие понятия о проектировании. Структура и	[3]
			основные принципы построения системы АКД.	[4], [5], [7], [8]
			Структурная модель САПР. Подсистемы САПР.	
			Виды обеспечений. Принципы построения САПР.	
			Принципы деления САПР. Подходы к	
			конструированию. Организация процесса	
			проектирования. Системный подход в	
	-		проектировании.	543
3	2	2	Информационное обеспечение. Уровни	[1]
			проектирования БД и модели БД.	[2]
			Техническое обеспечение САПР. Структура ТО	[5]
			САПР. Лингвистическое обеспечение.	
			Математическое обеспечение. Обзор методов	
			оптимизации. Экспертные системы. Экспертиза	
4	2	2	при проектировании.	Г13
4	2	3	Информационное обеспечение. Уровни	[1]
			проектирования БД и модели БД.	[2]
				[5]

6. Содержание коллоквиумов

Не предусмотрены учебным планом

7. Перечень практических занятий

№	Всего	№	Тема практического занятия. Задания, вопросы,	Учено-
темы	часов	занятия	отрабатываемые на практическом занятии	методическое
				обеспечение
1	2	3	4	5
2	2	1	Работа с главным окном, окном документа, командами меню чертежно-конструкторской системы КОМПАС 3D.	[3], [4], [6], [7], [8]
2	2	2	Простановка и редактирование размеров. Ввод объектов оформления	[3], [4], [6], [7], [8]
2	2	3	Работа с машиностроительной и конструкторской библиотеками.	[3], [4], [6], [7], [8]
2	2	4	Работа с прикладными библиотеками Компас- SHAFT и Компас- SPRING	[3], [4]
2	2	5	Выполнение построения 3d деталей	[3], [4], [6], [7], [8]

8. Перечень лабораторных работ

Не предусмотрены учебным планом

9. Задания для самостоятельной работы студентов

No	Всего	Задания, вопросы, для самостоятельного изучения	Учено-
темы	Часов	(задания)	методическое
			обеспечение
1	2	3	4
2	46	Строительные и другие библиотеки КОМПАС	[3], [4]
		3D. Параметризация в 3D. Сборка в 3D.	
		Изучение библиотеки металлоконструкции	
		Банки данных и базы данных. Примеры баз	
		данных	
3	22	Математическое обеспечение анализа проектных	[3], [5]
		решений. Математические модели в процедурах	
		анализа на макроуровне. Математическое	
		обеспечение анализа на микроуровне.	
		Математическое обеспечение анализа на	
		функционально-логическом уровне.	
		Математическое обеспечение анализа на	
		системном уровне. Математическое обеспечение	
		подсистем машиной графики и геометрического	
		моделирования. Математическое обеспечение	
		синтеза проектных решений. Постановка задач	
		структурного синтеза. Методы структурного	
		синтеза в САПР.	
4	24	Банки данных и базы данных. Примеры баз	
		данных.	

Самостоятельная работа студентов при изучении курса «Основы автоматизированного проектирования» включает: проработку конспекта лекций; подготовку к практическим занятиям; изучение материалов, выделенных для самостоятельной проработки; выполнение домашнего задания; проработку лекционных материалов по учебникам. В процессе самоподготовки следует ориентироваться на содержание разделов курса.

10. Расчетно-графическая работа

Не предусмотрена

11. Курсовая работа

Не предусмотрена

12. Курсовой проект

Не предусмотрен

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Изучение дисциплины Б.1.3.5.1 «Основы автоматизированного проектирования» направлено на формирование отдельных элементов следующих компетенций: владением достаточными для профессиональной деятельности навыками работы с персональным компьютером (ОПК-2); умением моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов (ПК-2); способностью принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями И использованием стандартных средств автоматизации проектирования (ПК-5); способностью разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам (ПК-6). Перечень показателей для компетенций составлен с учетом имеющихся в программе профессионального модуля умений и знаний.

Указанные компетенции формируются в соответствии со следующими этапами:

- 1. Формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные занятия, самостоятельная работа студентов);
- 2. Приобретение и развитие практических умений, предусмотренных компетенциями (практические занятия, самостоятельная работа студентов);
- 3. Закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе выполнения конкретных технических задач на практических занятиях, успешной сдачи зачета.

Сформированность компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенции по завершении освоения дисциплины;
- высокий уровень характеризуется максимально возможной выраженностью компетенции и является важным качественным ориентиром для самосовершенствования.

Для компетенции ОПК-2:
Пороговый уровень освоения компет

Пороговый уровень освоения компетенции: умеет пользоваться операционной системой и знает интерфейс прикладных программ;

Продвинутый уровень освоения компетенции: умеет применять вычислительную технику для решения типовых профессиональных задач;

Высокий уровень освоения компетенции: способен применять вычислительную технику для моделирования.

Для компетенции ПК-2:

Пороговый уровень освоения компетенции: общие, но неструктурированные знания по моделированию технических объектов и технологических процессов с использованием стандартных пакетов и средств автоматизированного проектирования, проводить эксперименты по заданным методикам с обработкой и анализом результатов;

Продвинутый уровень освоения компетенции: сформированные, но содержащие отдельные пробелы знания по моделированию технических объектов и технологических процессов с использованием стандартных пакетов и средств автоматизированного проектирования, проводить эксперименты по заданным методикам с обработкой и анализом результатов;

Высокий уровень освоения компетенции: сформулированные систематические знания по моделированию технических объектов и технологических процессов с использованием стандартных пакетов и средств автоматизированного проектирования, проводить эксперименты по заданным методикам с обработкой и анализом результатов.

Для компетенции ПК-5:

Пороговый уровень освоения компетенции: Неполные представления об основных сведениях и способах создания и обработки графических изображений и выполнении инженерных расчетов, об общих методах анализа и синтеза при проектировании машин, о стадиях разработки конструкторской документации; о математических методах поиска оптимального варианта конструкции. В целом успешное, но не систематическое умение использование умений выполнять и читать чертежи технических изделий и схем технологических процессов; умение проектировать и конструировать типовые элементы машин; умений рассчитать и спроектировать детали и узлы машин общего назначения, используя справочную литературу, стандарты и программные продукты. В целом успешное, но не систематическое владение навыками работы в системе КОМПАС.

Продвинутый уровень освоения компетенции: Сформированные, но содержащие отдельные пробелы представления об основных сведениях и способах создания и обработки графических изображений и выполнении инженерных расчетов, об общих методах анализа и синтеза при проектировании машин, о стадиях разработки конструкторской документации; о математических методах поиска оптимального варианта конструкции. В целом успешное, но содержащее отдельные пробелы умений выполнять и читать чертежи технических изделий и схем технологических процессов; умение проектировать и конструировать типовые элементы машин; умений рассчитать и спроектировать детали и узлы машин общего назначения, используя справочную литературу, стандарты и программные продукты. В целом успешное, но содержащее отдельные пробелы владение навыками работы в системе КОМПАС.

Высокий уровень освоения компетенции: Сформированные систематические представления об основных сведениях и способах создания и обработки графических изображений и выполнении инженерных расчетов, об общих методах анализа и синтеза при проектировании машин, о стадиях разработки конструкторской документации; о математических методах поиска оптимального варианта конструкции. Сформированное умение выполнять и читать чертежи технических изделий и схем технологических процессов; умение проектировать и конструировать типовые элементы машин; умений рассчитать и спроектировать детали и узлы машин общего назначения, используя справочную литературу, стандарты и программные продукты. Успешное и систематическое владение навыками работы в системе КОМПАС.

Для компетенции ПК-6:

Пороговый уровень освоения компетенции: в целом успешное, но не систематическое использование умений оформлять конструкторскую документацию; применение навыков использования средств компьютерной графики для изготовления чертежей; владение навыками проверки соответствия конструкторской документации нормативным документам; применение навыков конструирования оборудования.

Продвинутый уровень освоения компетенции: в целом успешное, но содержащее отдельные пробелы использование умений оформлять конструкторскую документацию; применение навыков использования средств компьютерной графики для изготовления чертежей; владение навыками проверки соответствия конструкторской документации нормативным документам; применение навыков конструирования оборудования.

Высокий уровень освоения компетенции: Успешное и систематическое использование умений оформлять конструкторскую документацию; применение навыков использования средств компьютерной графики для изготовления чертежей; владение навыками проверки соответствия конструкторской документации нормативным документам; применение навыков конструирования оборудования.

При достаточном качестве освоения приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на высоком, продвинутом или пороговом уровне. В противном случае компетенция в рамках настоящей дисциплины считается неосвоенной.

Код	2		Критерии оценивания		ания
компе тенции	Этап формирования	Показатели оценивания	Промежуточ ная аттестация	Типовые задания	Шкала оценивания
1	2	3	4	5	6
ОПК-2	7 семестр	Уметь:	Выполнение	Вопросы	«зачтено»,
		- использовать современные	заданий на	К	«не
		информационные технологии	практических	модулям	зачтено»
		для моделирования и	занятиях.	и зачету.	
		оптимизации деталей.	Оценки по	Контроль	
			модулям.	ные	
				тесты	
ПК-2	7 семестр	Знать:	Выполнение	Вопросы	«зачтено»,
		- современное программное	заданий на	К	«не
		обеспечение для создания и	практических	модулям	зачтено»
		обработки графических	занятиях.	и зачету.	
		изображений и выполнения	Оценки по	Контроль	
		инженерных расчетов;	модулям.	ные	
		 методы и способы построения 		тесты	
		трехмерных объектов и			
		алгоритмов расчета.			
		Уметь:			
		– разрабатывать порядок			
		проектирования детали в			
		зависимости от ее сложности,			
		выбирая наиболее оптимальные			
		методы построения отдельных			
ПК-5	7 семестр	элементов.	Выполнение	Вопросы	//29UTAUO\\
11113	/ ccwccrp	– современное программное	заданий на	К	«зачтено», «не
		обеспечение для создания и	практических	к модулям	зачтено»
		обработки графических	занятиях.	и зачету.	Su ITello
		изображений и выполнения	Оценки по	Контроль	
		инженерных расчетов;	модулям.	ные	
		Уметь:		тесты	
		– проектировать детали с			
		заданными параметрами и			
		характеристиками.			
		Владеть:			
		- практическими навыками			
		использования интерфейса			
		современных программ САПР			

1	2	3	4	5	6
		(KOMΠAC-3D, MathCad);			
		 практическими навыками 			
		построения трехмерных			
		объектов машиностроительных			
		деталей и их сборок.			
ПК-6	7 семестр	Уметь:	Выполнение	Вопросы	«зачтено»,
		 находить компромисс между 	заданий на	К	≪не
		различными требованиями;	практических	модулям	зачтено»
		Владеть:	занятиях.	и зачету.	
		 практическими навыками 	Оценки по	Контроль	
		построения трехмерных	модулям.	ные	
		объектов машиностроительных		тесты	
		деталей и их сборок;			
		– практическими навыками			
		создания и оформления			
		конструкторской документации			
		(граф-кой и текстовой) в			
		системах САПР (рабочие и			
		сборочные чертежи деталей,			
		спец-ции, расчеты, таблицы,			
		пояснительные записки).			

Текущий и промежуточный контроль качества обучения студентов осуществляется в устной и интерактивной формах: задания по разделам на практических занятиях, устный фронтальный опрос.

Критерии оценки для контрольного тестирования:

- контрольное тестирование зачтено, если студент дал правильные ответы на контрольные вопросы от 50% и выше;
- контрольное тестирование не зачтено, если студент дал правильные ответы в промежутке от 0 до 49%.

Критерии оценки для зачета:

- «зачтено» заслуживает студент, обнаруживший полное знание материала изученной дисциплины, успешно выполняющий предусмотренные задания, усвоивший основную литературу, рекомендованную рабочей программой дисциплины; показавший систематический характер знаний по дисциплине; при этом допускаются непринципиальные ошибки.
- «не зачтено» выставляется студенту, обнаружившему серьезные пробелы в знаниях основного материала изученной дисциплины, допустившему принципиальные ошибки в выполнении заданий, не ответившему на основные и дополнительные вопросы.

Примеры контрольных вопросов и заданий для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины, а также для контроля самостоятельной работы обучающегося по отдельным разделам дисциплин.

Текущий контроль

Модуль 1

- 1. Что включает в себя лингвистическое обеспечение САПР?
- 1- языки программирования, терминология; 2 методы, математические модели и алгоритмы выполнения процесса проектирования; 3- устройства вычислительной и организационной

техники, средства передачи данных; 4- документы, содержащие описания стандартных проектных процедур; 5- программы с не обходимой программной документацией.

- 2. Что включает в себя методическое обеспечение САПР?
- 1- документы, в которых отражены состав, правила отбора и эксплуатации средств автоматизированного проектирования; 2 методы, математические модели и алгоритмы выполнения процесса проектирования; 3- устройства вычислительной и организационной техники, средства передачи данных, измерительные и другие устройства и их сочетания; 4-документы, содержащие описания стандартных проектных процедур, типовых проектных решений, типовых элементов и другие данные; 5- программы с не обходимой программной документацией.

Модуль 2

- 8. База данных это:
- 1- структурированная совокупность данных; 2- банк данных; 3- запись; 4- указатель записей;
- 5- кортеж.
- 9. Какая система предназначена для компьютерной поддержки конструирования:
- 1- CAD; 2-CAE; 3-CAM; 4- PDM; 5- CALS

Вопросы для зачета

- 1. Понятие САПР. САПР как объект проектирования
- 2. Структура и основные принципы построения системы АКД
- 3. Структурная модель САПР. Подсистемы САПР
- 4. Структурная модель САПР. Виды обеспечений САПР
- 5. Принципы построения САПР
- 6. Принципы деления САПР
- 7. Подходы к конструированию
- 8. Организация процесса проектирования
- 9. Проект предприятия с точки зрения системного подхода
- 10. Процесс проектирования с точки зрения системного подхода
- 11. Иерархические уровни проектирования в системном анализе
- 12. Особенности и этапы проектирования предприятия с помощью САПР
- 13. Банки данных и базы данных. Пример базы данных.
- 14. Уровни проектирования БД и модели БД.
- 15. Требования и структура технического обеспечения (ТО)САПР.
- 16. Типы сетей передачи данных в ТО САПР.
- 17. Аппаратура рабочих мест и периферийные устройства в автоматизированных системах проектирования и управления.
- 18. Лингвистическое обеспечение САПР.
- 19. Математическое обеспечение САПР.
- 20. Экспертные системы.
- 21. Экспертиза при проектировании.
- 22. Этапы жизненного цикла (ЖЦ) изделия. Информация об изделии по этапам ЖЦ.
- 23. Определение CALS. Назначение. Направления развития. Цели и стандарты CALS.
- 24. Требования к САПР и направления развития с точки зрения CALS. Назначение CAD/CAE/CAM систем.
- 25. Распределение CAD/CAE/CAM систем по этапам технологической подготовки производства. Уровни и модульность CAD/CAE/CAM систем.
- 26. Интеграция в CAD/CAE/CAM системах.
- 27. Новое в КОМПАС 3D V15. Пользовательский интерфейс. Общие усовершенствования. Трехмерное моделирование. Новое в КОМПАС 3D V15. Изменения и новое в библиотеках.
- 28. Библиотеки Компас-Spring, Компас-Gears, Компас-Shaft.

- 29. Параметрические возможности графических редакторов.
- 30. Назначение и возможности систем трехмерного твердотельного параметрического моделирования.
- 31. Порядок построения модели в 3D системе (эскизы, возможные операции, вспомогательные построения, параметрические св-ва).
- 32. Построить 3-D модель по эскизу.
- 33. Построить 3-D модель вала использую библиотеку.
- 34. Построить 3-D модель использую параметризацию.
- 35. Построить 3-D модель шнека.
- 36. С 3-D модели получить рабочий чертеж детали.

14. Образовательные технологии

В процессе обучения активно используются периодические издания по профилю подготовки бакалавров, а также видеофильмы, компьютерные программы.

Чтение лекций по данному курсу осуществляется с применением мультимедийных технологий и в интерактивной форме, проведение практических занятий в компьютерных классах ФГБОУ ВО ЭТИ (филиал) СГТУ имени Гагарина Ю.А.

Внеаудиторная самостоятельная работа студентов проводится с использованием библиотечных ресурсов института, ресурсов сети Интернет и локальных сетевых ресурсов института.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

(позиции раздела нумеруются сквозной нумерацией и на них осуществляются ссылки из 5-13 разделов)

Основная литература:

- 1. Авлукова Ю.Ф. Основы автоматизированного проектирования [Электронный ресурс]: учебное пособие/ Авлукова Ю.Ф.— Электрон. текстовые данные.— Минск: Вышэйшая школа, 2013.— 221 с.— Режим доступа: http://www.iprbookshop.ru/24071.
- 2. Алексеев Г.В. Возможности интерактивного проектирования технологического оборудования [Электронный ресурс]: учебное пособие/ Алексеев Г.В.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2013.— 263 с.— Режим доступа: http://www.iprbookshop.ru/16896.
- 3. Компас 3D V15. Руководство пользователя. Аскон, 2014.- 2488c. Режим доступа: http://kompas.ru/source/info_materials/kompas_v15/KOMPAS-3D_Guide.pdf
- 4. Азбука КОМПАС 3D V15. -Аскон, 2014.- 492с. Режим доступа: http://kompas.ru/source/info_materials/kompas_v15/Tut_3D.pdf
- 5. http://techn.sstu.ru/new/SubjectFGOS/Default.aspx?kod=605

Дополнительная литература:

- 6. Основы автоматизированного проектирования: учебник для студ. высш. учеб. заведений / Е. М. Кудрявцев. 2-е изд., стер. М.: Издательский центр "Академия", 2013. 304 с.-Экземпляры всего:2
- 7. Компьютерные технологии и графика : атлас / П. Н. Учаев, С. Г. Емельянов [и др.] ; ред. П. Н. Учаев. Старый Оскол : ТНТ, 2013. 276 с. : ил. ; 23 см. Допущено Мвом образования и науки РФ. ISBN 978-5-94178-281-9. Экземпляры всего:1
- 8. Левицкий В.С. Машиностроительное черчение и автоматизация выполнения чертежей [Электронный ресурс]: учебник/ В.С. Левицкий, 2011. 1 эл. опт. диск (CD-ROM) http://lib.sstu.ru/books/Ld_124.pdf

9. Инженерная и компьютерная графика [Электронный ресурс]: учебник для студ. вузов/ В.М. Дегтярев, В.П. Затыльникова. - Электрон. текстовые дан. - М.: ИЦ "Академия", 2010. - 1 эл. опт. диск (CD-ROM) http://lib.sstu.ru/books/Ld_171.pdf

Программное обеспечение

Институт имеет операционные системы Windows, стандартные офисные программы, электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе.

Комплект мультимедийных приложений к лекциям.

Пакеты программ при изучении дисциплины:

Компас 3D V15 – система твердотельного проектирования.

Интернет-ресурсы:

Единое окно доступа к образовательным ресурсам http://window.edu.ru/ Сайт компании АСКОН http://www.ascon.ru/ Форум пользователей ПО АСКОН http://forum.ascon.ru/ Сайт научно-технического центра АПМ http://www.apm.ru/rus/ Система трехмерного моделирования КОМПАС-3D http://kompas.ru/

Источники ИОС http://techn.sstu.ru

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 24 стула; рабочее место преподавателя; доска для написания фломастером; проектор BENQ 631, рулонный проекционный экран, ноутбук с подключением к сети с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Учебная аудитория для проведения занятий практического типа, выполнения курсовых работ, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций

Укомплектована специализированной мебелью и техническими средствами обучения:

12 компьютеров Celeron 2600 подключенных к Интернет; д, доска аудиторная для написания фломастером.

Автор (С.П.Апостолов

17. Дополнения и изменения в рабочей программе

« <u> </u>	очая прог »		смотрена на заседании ка года, протокол №	афедры
	Зав. к	афедрой		/
	Внес	енные изме	нения утверждены на зас	
				УМКН
	*	>>	201 года, протокол .	Nº
	Пред	селатель УМ	ЛКH /	/