Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Технология и оборудование химических, нефтегазовых и пищевых производств»

Оценочные материалы по дисциплине

М.1.3.2.2 Наноматериалы в технологии композитов и покрытий

направления подготовки 18.04.01 «Химическая технология»

профиль

«Химическая технология композиционных материалов и покрытий»

Перечень компетенций и уровни их сформированности по дисциплинам (модулям), практикам в процессе освоения ОПОП ВО

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины «Наноматериалы в технологии композитов и покрытий» должна сформироваться компетенция ПК-3.

Критерии определения сформированности компетенций на различных уровнях их формирования

Индекс компетенции	Содержание компетенции			
	Способен осуществлять организационно-методическое и научно-			
ПК-3	техническое руководство работами по комплексному контролю			
	производства наноструктурированных композиционных материалов.			

Код и наименование индикатора достижения компетенции	Виды занятий для формирования компетенции	Оценочные средства для оценки уровня сформированности компетенции
ИД-1пк-3 Способен изучать	лекции,	Устный опрос, комплект
свойства и контролировать	практические занятия,	заданий для выполнения
получение	самостоятельная работа	практических работ, вопросы
наноструктурированных		для проведения экзамена,
композиционных материалов		тестовые задания

Уровни освоения компетенции

Уровень освоения компетенции	Критерии оценивания	
Продвинутый (отлично)	Знать: методологические подходы к разработке технологии получения наноструктурированных композиционных материалов. Уметь: планировать экспериментальные работы, получения наноструктурированных материалов и интерпретации их свойств; Владеть: профессиональными знаниями и практическими навыками руководства работами по комплексному контролю производства наноструктурированных композиционных материалов.	
Повышенный (хорошо)	Знать: достаточной степени знает методологические подходы к разработке технологии получения наноструктурированных композиционных материалов. Уметь: в достаточной степени может планировать экспериментальные работы, получения наноструктурированных материалов и интерпретации их свойств; Владеть: в достаточной степени владеет профессиональными знаниями и практическими навыками руководства работами по комплексному контролю производства наноструктурированных композиционных материалов.	

	Знать: частично знает методологические подходы к разработке
	технологии получения наноструктурированных композиционных
	материалов.
	Уметь: на минимально приемлемом уровне может планировать
Пороговый (базовый)	экспериментальные работы, получения наноструктурированных
(удовлетворительно)	материалов и интерпретации их свойств;
	Владеть: на минимально приемлемом уровне владеет
	профессиональными знаниями и практическими навыками
	руководства работами по комплексному контролю производства
	наноструктурированных композиционных материалов.

2. Методические, оценочные материалы и средства, определяющие процедуры оценивания сформированности компетенций (элементов компетенций) в процессе освоения ОПОП ВО

2.1 Оценочные средства для текущего контроля

Вопросы для устного опроса

Тема 1. Введение в курс «Технологии производства наноматериалов».

- 1. Назовите методы синтеза наноматериалов.
- 2. Сущность метода конденсации паров и газофазного синтеза.
- 3. Сущность плазмохимического синтеза.
- 4. Сущность метода осаждения из коллоидных растворов
- 5. Сущность метода химической конденсации.
- 6. Сущность механохимического синтеза.
- 7. Сущность пиролиза при получении наноматериалов.
- 8. Сущность детонационного синтеза.
- 9. Сущность метода дезинтеграция.
- 10. Методы исследования наноматериалов.

Тема 2. Нульмерные наноструктуры: наночастицы.

- 1. Формирование наночастиц посредством гомогенной нуклеации.
- 2. Основы гомогенной нуклеации.
- 2. Синтез металлических, полупроводниковых и оксидных наночастиц.
- 3. Реакции в газовой фазе.
- 4. Сегрегация твердой фазы.
- 5. Формирование наночастиц посредством гетерогенной нуклеации.
- 6. Синтез в мицеллах или в микроэмульсиях.
- 7. Аэрозольный синтез.
- 8. Пиролиз аэрозолей.
- 9. Матричный (темплатный) синтез.
- 10. Эпитаксиальные наночастицы «ядро в оболочке».

Тема 3. Одномерные наноструктуры: нанонити и Наностержни.

- 1. Самопроизвольный рост одномерных наноструктур.
- 2. Рост в результате испарения (растворения).
- 3. Рост по механизму «пар-жидкость-кристалл»
- 4. Рост по механизму «раствор-жидкость-кристалл».
- 5. Матричный (темплатный) синтез.
- 6. Электроформование волокон.
- 7. Литография.

Тема 4. Двумерные наноструктуры: тонкие пленки.

- 1. Основы роста пленок.
- 2. Вакуумные технологии.
- 3. Физическое осаждение из газовой фазы.
- 3. Химическое осаждение из газовой фазы.
- 4. Осаждение атомных слоев.
- 5. Получение и свойства сверхрешеток.
- 6. Как происходит самосборка.
- 7. Получение и свойства пленок Ленгмюра-Блоджетт.
- 8. Получение пленок электрохимическим осаждением.
- 9. Получение и свойства золь-гель-пленок.

Тема 4. Значение нанотехнологий в мирное и военное время.

- 1. Анализ и измерение наноструктур.
- 2. Практическое применение нанотехнологий. Применение нанотехнологий в мирной жизни.
- 3. Использование нанотехнологий в военном обмундировании и вооружении.
- 4. Зеленые методы биосинтеза наночастиц.

2.2 Оценочные средства для промежуточного контроля

Вопросы к экзамену

- 1. Основные понятия и определения в науке о наносистемах и нанотехнологии. Примеры природных и искусственных нанообъектов и наносистем: особенности их физических и химических свойств. Методы нанотехнологий. Классификация наноматериалов по размерности (с примерами).
- 2. Особенности физических взаимодействий на наномасштабах: роль объема и поверхности гравитационные и электростатические взаимодействия. Ван-дер-Ваальсовы взаимодействия. Эффект геккона.
- 3. Особенности поглощения и преломления света в наноструктурированных средах. Качественное объяснение этих эффектов. Фотонные кристаллы. Принцип действия. Особенности магнитных свойств нанообъектов.
- 4. Оптическое разрешение и дифракционный предел. Конфокальная микроскопия. STED-микроскопия.
- 5. Нанодиагностика с помощью электронных и ионных пучков: диагностика и микроанализ. Просвечивающая электронная микроскопия и сканирующая

электронная микроскопия: принцип работы, возможности и ограничения.

- 6. Сканирующая зондовая микроскопия: принцип работы атомно- силового и туннельного микроскопа, возможности и ограничения. Сканирующая зондовая спектроскопия.
- 7. Оптическая микроскопия ближнего поля: принцип работы, возможности и ограничения.
- 8. Основные понятия квантовой механики: постулаты Бора, гипотеза де Бройля, принцип неопределенности Гейзенберга, природа волнового процесса и уравнение Шрѐдингера.
- 9. Металлы, полупроводники и диэлектрики зонная теория. Квазичастицы. Уровень Ферми. Закон дисперсии прямозонного полупроводника.
- 10. Типы идеальных твердотельных наноструктур. Квантово-размерный эффект: решение уравнения Шредингера для электрона в бесконечно глубокой квантовой яме, квантово-размерная добавка к ширине запрещенной зоны.
- 11. Полупроводниковые гетероструктуры. Метод молекулярно-лучевой эпитаксии и механизмы роста пленок. Устройство и принцип работы лазера на квантовых точках.
 - 12. Транспорт электронов в наноструктурах. Одноэлектроника. Спинтроника.
- 13. Поверхностное натяжение. Уравнение Юнга-Дюпре. Гидрофобные и гидрофильные поверхности. Кривизна поверхности. Уравнение Лапласа.
- 14. Морфологическое многообразие нанодисперсных систем. Аморфные и кристаллические материалы. Мезофазы. Классификация нанопористых и нанодисперсных материалов: по геометрическому строению, классификация Радушкевича, по характеру текстуры.
- 15. Безмодельные характеристики нанопористых и нанодисперсных материалов.
 - 16. Удельная поверхность материалов, размер частиц и пор.
- 17. Терминология, используемая при изучении дисперсных систем. Фазовые превращения в гомогенных средах. Классическая теория зародышеобразования. Кинетический контроль кристаллообразования.
 - 18. Равновесная форма и поверхностное натяжение твердых фаз.
- 19. Гетерогенное зародышеобразование. Особенности роста кристаллических частиц. Механизмы роста пленок.
- 20. Общие подходы к синтезу наноструктурированных материалов. Литографические методы электронно-лучевая и ионно-лучевая литография, микросферная литография, нанолитография, мягкая литография, микропечать. Микро-электро-механические системы. Механохимия помол и диспергирование.
 - 21. Золь-гель синтез. Стадии. Продукты.
- 22. Методы химической гомогенизации: пиролиз аэрозолей, сублимационная сушка (криохимическая технология), гидротермальный метод, сверхкритическая сушка (получение аэрогелей).
- 23. Методы синтеза наноматериалов «снизу-вверх». Термодинамика самосборки и самоорганизации термодинамические потенциалы.
- 24. Методы синтеза наноматериалов «снизу-вверх». Молекулярно- лучевая эпитаксия (PVD). Химическое осаждение. Пленки Ленгиюра- Блоджетт.

- 25. Шаблонный синтез (темплат-синтез). Виды темплатов. Темплат- синтез цеолитов: мономеры и олигомеры SiO_2 ; темплаты, используемые для синтеза цеолитов; механизм образования первичных, вторичных и т.д. агрегатов; принципиальная схема сборки цеолитов (на примере ZSM-5). Основные типы цеолитов.
- 26. Шаблонный синтез (темплат-синтез). Виды темплатов. Жидкие кристаллы. Диаграмма состояния «вода-ПАВ-масло» и эволюция мицеллярной поверхности. Схема формирования мезопористых оксидов (на примере МСМ-41).
 - 27. Подходы к получению 1D структур. ПЖК-метод.
- 28. Химические источники тока: принцип действия Li-ионных батарей, анодные и катодные материалы.
 - 29. Композитные материалы: строение и классификация. Примеры.
- 30. Нанокомпозиты: отличие от микрокомпозитов, дисперсность и форма частиц наполнителя.
 - 31. Нанокомпозиты с полимерной матрицей: типы матриц и наполнителя.
- 32. Нанокомпозиты с полимерной матрицей: электрические и оптические свойства. Примеры.
- 33. Способы приготовления полимерных нанокомпозитов наполненных углеродными нанотрубками изотропных и анизотропных.

Практические задания для проведения экзамена

- Задание 1. Приведите классификацию наноматериалов.
- Задание 2. Приведите примеры использования наноматериалов в медицине.
- Задание 3. Приведите примеры использования наноматериалов в энергетике.
- Задание 4. Приведите примеры использования наноматериалов дя производста боевого комплекта одежды солдат.
- Задание 5. Приведите примеры использования наноматериалов в текстильной промышленности.
- Задание 6. Приведите способы получения нановолокон.
- Задание 7. Ограничение нанотехнологии как терапии.
- Задание 8. Ограничение нанотехнологии как терапии.
- Задание 9. Приведите схему вытягивания нановолокна из капли микропипеткой.
- Задание 10. Приведите схему вытягивания нановолокна из капли микропипеткой.
- Задание 10. Приведите области применения «умного» текстиля.
- Задание 11. Приведите основные цели применения нанотехнологий.

Таблица 1 — Критерии выставления оценок при проведении текущего контроля и промежуточной аттестации

Шкала оценки	Оценка	Критерий выставления оценки
Четырехбалльная	Отлично	Обучающийся глубоко и прочно усвоил весь
шкала		программный материал, исчерпывающе, последовательно, грамотно и логически стройно
		его излагает, тесно увязывает теорию с практикой.
		Обучающийся не затрудняется с ответом при
		видоизменении задания, свободно справляется с
		_
		задачами, заданиями и другими видами применения знаний, владеет разносторонними
		навыками и приемами выполнения практических
		работ, обнаруживает умение самостоятельно
		обобщать и излагать материал, не допуская
		ошибок
		ОШИООК
	Хорошо	Обучающийся твердо знает программный
		материал, грамотно и по существу излагает его, не
		допускает существенных неточностей в ответе на
		вопрос, может правильно применять
		теоретические положения и владеет
		необходимыми навыками при выполнении
		практических работ
	Удовлетворительно	Обучающийся усвоил только основной материал,
		но не знает отдельных деталей, допускает
		неточности, недостаточно правильные
		формулировки, нарушает последовательность в
		изложении программного материала и испытывает
		затруднения при выполнении практических работ
	Неудовлетворительно	Обучающийся не знает значительной части
		программного материала, допускает существенные
		ошибки, с большими затруднениями выполняет
		практические работы

2.3. Итоговая диагностическая работа по дисциплине

ЗАДАНИЯ ДЛЯ ДИАГНОСТИЧЕСКОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ПРАКТИКЕ

Компетенция: ПК-3 - способен осуществлять организационно-методическое и научно-техническое руководство работами по комплексному контролю производства наноструктурированных композиционных материалов.

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
1.	междисциплинарная	Нанотехнологии – это сумма множества технологий,	ПК-3	ИД-1 _{ПК-3} Способен изучать свойства и контролировать
2.	энергетика, медицина, умный многофункциональный текстиль и одежда, космос, боевой комплект одежды солдата XXI века	Области применения нанотехнологий:	ПК-3	получение наноструктурированных композиционных материалов
3.	развития человечества	Нанотехнологии являются новым направлением	ПК-3	
4.	новые методы диагностики и лечения заболеваний, новые лекарства, создание компактных и мощных источников электрической энергии, новое поколение компьютерной техники	Ожидаемые выгоды от использования нанотехнологий	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
5.	новые проблемы загрязнения окружающей среды, появление искусственной жизни с неуправляемыми последствиями, увеличение рисков от терроризма, усиление гонки вооружения, формированиена основе нанотехнологий системы тотального контроля и наблюдения, нанобиологическое оружие, боевые насекомые, сверхзависимость от программ и компьютеров, избирательно действие нановооружения на людей с разными генными особенностями	Риски и опасности нанотехнологий заключаются в	ПК-3	
6.	экология, медицина; информационные коммуникации и инфраструктура; военно-технические угрозы; террористические угрозы;	Классификация потенциальных рисков:	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
	геополитические риски			
7.	сверхмалые габариты, высокая проникающая способность, отсутствие механизма защиты у человека и животных, малые энергетические затраты и миниатюрность продукциивозможность производить в домашних условиях при знание НОУ Хау	Основные причины рисков и угроз:	ПК-3	
8.	Большая удельная поверхность, высокая адсорбционная емкость, высокая реакционная и каталитическая способность	Факторы потенциальной нанотоксичности:	ПК-3	
9.	размера частиц, их геометрии и порядка расположения	Свойства наноматериалов зависят от	ПК-3	
10.	физические, химические, физико-химические, зеленые	Методы получения наночастиц и нанообъектов	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
11.	ренгеноструктурный анализ, микроскопия высокого разрешения, спектроскопия	Основные методы, используемые при анализе наночастиц, наноструктур, объемных материалов, наполненных наночастицами	ПК-3	
12.	от агрегатного состояния, химического строения и что хотим изучить	От чего зависит выбор метода анализа нанообъекта	ПК-3	
13.	размером, формой, распределением	Нанопоры характеризуются	ПК-3	
14.	высотой, формой и равномерностью	Наношероховатости внешней поверхности характеризуются	ПК-3	
15.	размером, геометрией, распределением и взаимодействием друг с другом и матрицей	Наночастицы в объеме объекта необходимо характеризовать	ПК-3	
16.	разрешающей способностью	Минимальный размер частиц образца, который можно увидеть на микроскопе определяется его	ПК-3	
17.	электронная микроскопия	Наиболее информативной в изучении нанообъектов является	ПК-3	
18.	современных физических и физико-химических методов	Развитие нанотехнологий и нанонауки существенно ускорилось с использованием	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
	анализа			
19.	нанокомпозитов	Обеспечить работоспособность и повысить прочность конструкций возможно с помощью	ПК-3	
20.	Наночастицами, нановолокнами, нанотрубками	В нанокомпозитах полимерная матрица наполнена	ПК-3	
21.	из наноматериалов с углеродными нанотрубками	Снижение потерь при передаче энергии возможно решить за счет сверхпроводящих электрокабелей	ПК-3	
22.	элементов и солнечных панелей	Первоочередные задачи в области конверсии энергии заключаются в совершенствовании топливных	ПК-3	
23.	в диагностики, так и терапии	Нанотехнологии в современной медицине проявляются как	ПК-3	
24.	нанотранспортерами	Современные методы доставки лекарств в патологические ткани и органы осуществляются	ПК-3	
25.	рН среды, температуры, давления, времени	Свойства конструкции наночастиц – нанотранспортеров (структура и объем) меняются в зависимости от внешних факторов:	ПК-3	
26.	изменения внешней среды	Управляемое высвобождение лекарств из нанотранспортеров происходит за счет	ПК-3	
27.	углеродные нанотрубки и пористые кремниевые	Неорганические нанотранспортеры – это	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
	структуры			
28.	нужное время и нужном месте	«Умный» текстиль обладает свойствами, изменяющимися в	ПК-3	
29.	армейской, спортивной, диагностической, медицинской	Области использования «умного» текстиля в одежде	ПК-3	
30.	нановолокон и нано-, микропор	Легкость и климат – контроль одежды создается за счет	ПК-3	
31.	углеродных нанотрубок	Пуленепробиваемый шлем, бронежилет изготавливают из полимерного композита на основе	ПК-3	
32.	2, 3	В чем заключается подход « top down»: 1. увеличение размеров химической обработкой 2. уменьшение размеров физико-химической обработкой 3. уменьшение размеров физических тел механической обработкой	ПК-3	
33.	1, 3	Подход « botton-up» реализуется 1. синтезом требуемых объектов 2. последовательным неуправляемым наращиванием 3. атомной сборкой	ПК-3	
34.	1	Под действием чего проводят атомно- молекулярную сборку 1. под сканирующим туннельным микроскопом 2. методом порошковой металлургии	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		3. молекулярно- лучевой эпитаксией		
35.	2, 3	Что следует называть нановолокнами: 1. все волокна, независимо от их химической природы 2. если они по одному из рамеров укладываются в шкалу 1- 100 нм 3. имеют пустоты наноразмеров	ПК-3	
36.	2	Можно ли получить химические нановолокна диаметром меньше 100 нм по традиционной технологии: 1. да 2. нет 3. частично	ПК-3	
37.	2, 3	 Химические нанокомпозитные волокна это: волокна, полученные из сополимеров волокна, наполненные наночастицами при получении в расплаве волокна, наполненные наночастицами перед прядением 	ПК-3	
38.	1, 3	Какой из способов получения нановолокон наиболее практический коммерциализованный: 1. способ электроформование 2. метод разделения фаз 3. метод самосборки 4. шаблонный метод	ПК-3	
39.	4	При переходе от макроматериалов к наноматериалам удельная поверхность увеличивается в:	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		1. 10 раз		
		2. 100 pas		
		3.10000 pas		
		4. 1000000 pas		
		Оптические свойства наночастиц металлов зависят от :		
40.	3	1. размера частиц	ПК-3	
		2. формы		
		3. размера и формы частиц		
	2	Химические свойства наноматериалов изменяются за счет:		
4.1	3	1. числа поверхностных атомов	HII. 0	
41.		2. числа молекул и ионов	ПК-3	
		3. повышения реакционной способности и каталитической активности		
		поверхностных частиц Наночастицы могут быть использованы:		
	3	1. для улучшения свойств традиционных материалов и композитов		
42.	3	2. для создания новых материалов	ПК-3	
72.		3. для улучшения классических и создания материалов нового	1111	
		поколения		
		Наночастицы подчиняются законам:		
43.	2	1. ньютоновской физики	ПК-3	
		2. квантовой физики		
		Физические методы производства наночастиц требуют:	THE C	
44.	1	1. высоких затрат энергии	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		2. использования токсичных реагентов		
45.	3	Какой метод не относится к основным методам получения углеродных нанотрубок и нановолокон? 1. дуговой 2. лазерно-термический 3. пиролитический 4. биотехнологический	ПК-3	
46.	2	Какой из микроскопов изобретен позже остальных? 1. сканирующий силовой микроскоп 2. сканирующий туннельный микроскоп 3. растровый микроскоп 4. просвечивающий электронный микроскоп	ПК-3	
47.	4	Где был изобретен сканирующий силовой микроскоп? 1. В России, в физико-техническом институте им. Иоффе 2. В США, IBM 3. В германском филиале IBM 4. В швейцарском филиале IBM	ПК-3	
48.	1	Кто ввел в научную литературу термин наноматериалы? 1. Г. Глейтер 2. Ж. И. Алферов 3. Р. Фейнман 4. Э. Дрекслер	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
49.	4	Какая из наноструктур является термодинамически неустойчивой? 1. Микроэмульсия 2. Мицеллы 3. Углеродные нанотрубки 4. Наноструктуры, формирующиеся интенсивной пластической деформацией	ПК-3	
50.	4	Кто из известных исследователей не является лауреатом Нобелевской премии? 1. ЖМ. Лен 2. Ж.И Алферов 3. Р. Фейнман 4. Правильного ответа нет	ПК-3	
51.	1	 Что означает относящийся к созданию нанообъектов термин "Тор down"? Диспергирование, уменьшение размера объекта Структурообразование, создание наноструктур из атомов и молекул Создание наноструктурированного слоя на нижней поверхности объекта Создание наноструктурированного слоя осадительными методами 	ПК-3	
52.	1	Что такое размерный эффект в технологии наноматериалов? 1. Изменение свойств нанообъектов в зависимости от размера элементов их структуры 2. Изменение размера нанообъектов в зависимости от внешних условий 3. Изменение свойств нанообъектов в зависимости от внешних условий	ПК-3	

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		4. Изменение размера нанообъектов в зависимости от состава		
		Укажите правильный порядок возрастания размеров частиц:		
	3	1. 1 Å, 1 мм, 1 мкм, 1 нм		
53.		2. 1 нм, 1 Å, 1 мкм, 1 нм	ПК-3	
		3. 1 Å, 1 нм, 1 мкм, 1 мм		
		4. 1 мкм, 1Å, 1нм, 1 мм		
		Что такое прекурсор?		
	3	1. Аппарат для получения наночастиц		
54.		2. Любое исходное вещество в химической реакции получения	ПК-3	
		наночастиц	1111 5	
		3. Исходное вещество, которое становится необходимой, существенной		
		частью продукта		
	1.0	В каком микроскопе используется кантилевер?	ПК-3	
55.	1, 2	1. Сканирующий силовой микроскоп		
33.		2. Сканирующий туннельный микроскоп 3. Растровый микроскоп	111X-3	
		4. Просвечивающий электронный микроскоп		
		Работа сканирующего туннельного микроскопа основана на:		
	2	1. Дифракции рентгеновских лучей		
56		2. Эффекте туннелирования электронов через тонкий диэлектрический	ПК-3	
56.		промежуток между проводящей поверхностью образца и сверхострой	11K-3	
		иглой		
		3. Просвечивании образца рентгеновскими лучами		

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		4. Просвечивании образца пучком электронов при ускоряющем напряжении 200-400 кВ		
		Что такое фуллерен?		
	3	1. Железосодержащая наноструктура, используемая в медицине		
57.	3	2. Углеродная нанотрубка	ПК-3	
		3. Семейство шарообразных полых молекул общей формулы C _n	int 5	
		4. Плоский лист графита мономолекулярной толщины		
		Что такое кантилевер?		
	4	1. Компьютерный блок в силовом микроскопе		
58.		2. Компьютерная программа обработки данных сканирующего	ПК-3	
56.		микроскопа	IIX-3	
		3. Подложка для образцов в растровом микроскопе		
		4. Зонд в сканирующем силовом микроскопе		
		Как величина туннельного тока при работе туннельного микроскопа	ПК-3	
	3	зависит от расстояния между острием иглы и исследуемым образцом?		
59.		1. Линейно возрастает с уменьшением расстояния 2. Линейно уменьшается с уменьшением расстояния		
		3. Экспоненциально возрастает с уменьшением расстояния		
		4. Экспоненциально уменьшается с уменьшением расстояния		
		При механохимическом синтезе используют:	ПК-3	
	3	1. Охлаждение исходного материала до низких температур		
60.		2. Плазменный нагрев		
		3. Мельницы сверхтонкого измельчения		

Номер задания	Правильный ответ	Содержание вопроса	Компетенция	Код и наименование индикатора достижения компетенции
		4. Взрывчатые вещества		
61.	3	Какой уровень возможностей искусственного интеллекта находится в стадии пилотного проекта: 1. пассивный «умный» материал — только чувствует 2. активный «умный» материал — чувствует и реагирует 3. очень «умный» материал — чувствует, реагирует и адаптируется в соответствии с внешними изменениями	ПК-3	